ray/rllib/agents/ddpg/ddpg_policy.py

522 lines
21 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from gym.spaces import Box
import numpy as np
import logging
import ray
import ray.experimental.tf_utils
from ray.rllib.agents.ddpg.ddpg_model import DDPGModel
from ray.rllib.agents.ddpg.noop_model import NoopModel
from ray.rllib.agents.dqn.dqn_policy import _postprocess_dqn, PRIO_WEIGHTS
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.tf_ops import huber_loss, minimize_and_clip, \
make_tf_callable
tf = try_import_tf()
logger = logging.getLogger(__name__)
def build_ddpg_model(policy, obs_space, action_space, config):
if config["model"]["custom_model"]:
logger.warning(
"Setting use_state_preprocessor=True since a custom model "
"was specified.")
config["use_state_preprocessor"] = True
if not isinstance(action_space, Box):
raise UnsupportedSpaceException(
"Action space {} is not supported for DDPG.".format(action_space))
if len(action_space.shape) > 1:
raise UnsupportedSpaceException(
"Action space has multiple dimensions "
"{}. ".format(action_space.shape) +
"Consider reshaping this into a single dimension, "
"using a Tuple action space, or the multi-agent API.")
if config["use_state_preprocessor"]:
default_model = None # catalog decides
num_outputs = 256 # arbitrary
config["model"]["no_final_linear"] = True
else:
default_model = NoopModel
num_outputs = int(np.product(obs_space.shape))
policy.model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
model_interface=DDPGModel,
default_model=default_model,
name="ddpg_model",
actor_hidden_activation=config["actor_hidden_activation"],
actor_hiddens=config["actor_hiddens"],
critic_hidden_activation=config["critic_hidden_activation"],
critic_hiddens=config["critic_hiddens"],
parameter_noise=config["parameter_noise"],
twin_q=config["twin_q"])
policy.target_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
model_interface=DDPGModel,
default_model=default_model,
name="target_ddpg_model",
actor_hidden_activation=config["actor_hidden_activation"],
actor_hiddens=config["actor_hiddens"],
critic_hidden_activation=config["critic_hidden_activation"],
critic_hiddens=config["critic_hiddens"],
parameter_noise=config["parameter_noise"],
twin_q=config["twin_q"])
return policy.model
def postprocess_trajectory(policy,
sample_batch,
other_agent_batches=None,
episode=None):
if policy.config["parameter_noise"]:
policy.adjust_param_noise_sigma(sample_batch)
return _postprocess_dqn(policy, sample_batch)
def build_action_output(policy, model, input_dict, obs_space, action_space,
config):
model_out, _ = model({
"obs": input_dict[SampleBatch.CUR_OBS],
"is_training": policy._get_is_training_placeholder(),
}, [], None)
action_out = model.get_policy_output(model_out)
# Use sigmoid to scale to [0,1], but also double magnitude of input to
# emulate behaviour of tanh activation used in DDPG and TD3 papers.
sigmoid_out = tf.nn.sigmoid(2 * action_out)
# Rescale to actual env policy scale
# (shape of sigmoid_out is [batch_size, dim_actions], so we reshape to
# get same dims)
action_range = (action_space.high - action_space.low)[None]
low_action = action_space.low[None]
deterministic_actions = action_range * sigmoid_out + low_action
noise_type = config["exploration_noise_type"]
action_low = action_space.low
action_high = action_space.high
action_range = action_space.high - action_low
def compute_stochastic_actions():
def make_noisy_actions():
# shape of deterministic_actions is [None, dim_action]
if noise_type == "gaussian":
# add IID Gaussian noise for exploration, TD3-style
normal_sample = policy.noise_scale * tf.random_normal(
tf.shape(deterministic_actions),
stddev=config["exploration_gaussian_sigma"])
stochastic_actions = tf.clip_by_value(
deterministic_actions + normal_sample,
action_low * tf.ones_like(deterministic_actions),
action_high * tf.ones_like(deterministic_actions))
elif noise_type == "ou":
# add OU noise for exploration, DDPG-style
zero_acts = action_low.size * [.0]
exploration_sample = tf.get_variable(
name="ornstein_uhlenbeck",
dtype=tf.float32,
initializer=zero_acts,
trainable=False)
normal_sample = tf.random_normal(
shape=[action_low.size], mean=0.0, stddev=1.0)
ou_new = config["exploration_ou_theta"] \
* -exploration_sample \
+ config["exploration_ou_sigma"] * normal_sample
exploration_value = tf.assign_add(exploration_sample, ou_new)
base_scale = config["exploration_ou_noise_scale"]
noise = policy.noise_scale * base_scale \
* exploration_value * action_range
stochastic_actions = tf.clip_by_value(
deterministic_actions + noise,
action_low * tf.ones_like(deterministic_actions),
action_high * tf.ones_like(deterministic_actions))
else:
raise ValueError(
"Unknown noise type '%s' (try 'ou' or 'gaussian')" %
noise_type)
return stochastic_actions
def make_uniform_random_actions():
# pure random exploration option
uniform_random_actions = tf.random_uniform(
tf.shape(deterministic_actions))
# rescale uniform random actions according to action range
tf_range = tf.constant(action_range[None], dtype="float32")
tf_low = tf.constant(action_low[None], dtype="float32")
uniform_random_actions = uniform_random_actions * tf_range \
+ tf_low
return uniform_random_actions
stochastic_actions = tf.cond(
# need to condition on noise_scale > 0 because zeroing
# noise_scale is how a worker signals no noise should be used
# (this is ugly and should be fixed by adding an "eval_mode"
# config flag or something)
tf.logical_and(policy.pure_exploration_phase,
policy.noise_scale > 0),
true_fn=make_uniform_random_actions,
false_fn=make_noisy_actions)
return stochastic_actions
enable_stochastic = tf.logical_and(policy.stochastic,
not config["parameter_noise"])
actions = tf.cond(enable_stochastic, compute_stochastic_actions,
lambda: deterministic_actions)
policy.output_actions = actions
return actions, None
def actor_critic_loss(policy, model, _, train_batch):
model_out_t, _ = model({
"obs": train_batch[SampleBatch.CUR_OBS],
"is_training": policy._get_is_training_placeholder(),
}, [], None)
model_out_tp1, _ = model({
"obs": train_batch[SampleBatch.NEXT_OBS],
"is_training": policy._get_is_training_placeholder(),
}, [], None)
target_model_out_tp1, _ = policy.target_model({
"obs": train_batch[SampleBatch.NEXT_OBS],
"is_training": policy._get_is_training_placeholder(),
}, [], None)
policy_t = model.get_policy_output(model_out_t)
policy_tp1 = model.get_policy_output(model_out_tp1)
if policy.config["smooth_target_policy"]:
target_noise_clip = policy.config["target_noise_clip"]
clipped_normal_sample = tf.clip_by_value(
tf.random_normal(
tf.shape(policy_tp1), stddev=policy.config["target_noise"]),
-target_noise_clip, target_noise_clip)
policy_tp1_smoothed = tf.clip_by_value(
policy_tp1 + clipped_normal_sample,
policy.action_space.low * tf.ones_like(policy_tp1),
policy.action_space.high * tf.ones_like(policy_tp1))
else:
policy_tp1_smoothed = policy_tp1
# q network evaluation
q_t = model.get_q_values(model_out_t, train_batch[SampleBatch.ACTIONS])
if policy.config["twin_q"]:
twin_q_t = model.get_twin_q_values(model_out_t,
train_batch[SampleBatch.ACTIONS])
# Q-values for current policy (no noise) in given current state
q_t_det_policy = model.get_q_values(model_out_t, policy_t)
# target q network evaluation
q_tp1 = policy.target_model.get_q_values(target_model_out_tp1,
policy_tp1_smoothed)
if policy.config["twin_q"]:
twin_q_tp1 = policy.target_model.get_twin_q_values(
target_model_out_tp1, policy_tp1_smoothed)
q_t_selected = tf.squeeze(q_t, axis=len(q_t.shape) - 1)
if policy.config["twin_q"]:
twin_q_t_selected = tf.squeeze(twin_q_t, axis=len(q_t.shape) - 1)
q_tp1 = tf.minimum(q_tp1, twin_q_tp1)
q_tp1_best = tf.squeeze(input=q_tp1, axis=len(q_tp1.shape) - 1)
q_tp1_best_masked = (
1.0 - tf.cast(train_batch[SampleBatch.DONES], tf.float32)) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = tf.stop_gradient(
train_batch[SampleBatch.REWARDS] +
policy.config["gamma"]**policy.config["n_step"] * q_tp1_best_masked)
# compute the error (potentially clipped)
if policy.config["twin_q"]:
td_error = q_t_selected - q_t_selected_target
twin_td_error = twin_q_t_selected - q_t_selected_target
td_error = td_error + twin_td_error
if policy.config["use_huber"]:
errors = huber_loss(td_error, policy.config["huber_threshold"]) \
+ huber_loss(twin_td_error, policy.config["huber_threshold"])
else:
errors = 0.5 * tf.square(td_error) + 0.5 * tf.square(twin_td_error)
else:
td_error = q_t_selected - q_t_selected_target
if policy.config["use_huber"]:
errors = huber_loss(td_error, policy.config["huber_threshold"])
else:
errors = 0.5 * tf.square(td_error)
critic_loss = model.custom_loss(
tf.reduce_mean(
tf.cast(train_batch[PRIO_WEIGHTS], tf.float32) * errors),
train_batch)
actor_loss = -tf.reduce_mean(q_t_det_policy)
if policy.config["l2_reg"] is not None:
for var in model.policy_variables():
if "bias" not in var.name:
actor_loss += policy.config["l2_reg"] * tf.nn.l2_loss(var)
for var in model.q_variables():
if "bias" not in var.name:
critic_loss += policy.config["l2_reg"] * tf.nn.l2_loss(var)
# save for stats function
policy.q_t = q_t
policy.td_error = td_error
policy.actor_loss = actor_loss
policy.critic_loss = critic_loss
# in a custom apply op we handle the losses separately, but return them
# combined in one loss for now
return actor_loss + critic_loss
def gradients(policy, optimizer, loss):
if policy.config["grad_norm_clipping"] is not None:
actor_grads_and_vars = minimize_and_clip(
optimizer,
policy.actor_loss,
var_list=policy.model.policy_variables(),
clip_val=policy.config["grad_norm_clipping"])
critic_grads_and_vars = minimize_and_clip(
optimizer,
policy.critic_loss,
var_list=policy.model.q_variables(),
clip_val=policy.config["grad_norm_clipping"])
else:
actor_grads_and_vars = optimizer.compute_gradients(
policy.actor_loss, var_list=policy.model.policy_variables())
critic_grads_and_vars = optimizer.compute_gradients(
policy.critic_loss, var_list=policy.model.q_variables())
# save these for later use in build_apply_op
policy._actor_grads_and_vars = [(g, v) for (g, v) in actor_grads_and_vars
if g is not None]
policy._critic_grads_and_vars = [(g, v) for (g, v) in critic_grads_and_vars
if g is not None]
grads_and_vars = (
policy._actor_grads_and_vars + policy._critic_grads_and_vars)
return grads_and_vars
def apply_gradients(policy, optimizer, grads_and_vars):
# for policy gradient, update policy net one time v.s.
# update critic net `policy_delay` time(s)
should_apply_actor_opt = tf.equal(
tf.mod(policy.global_step, policy.config["policy_delay"]), 0)
def make_apply_op():
return policy._actor_optimizer.apply_gradients(
policy._actor_grads_and_vars)
actor_op = tf.cond(
should_apply_actor_opt,
true_fn=make_apply_op,
false_fn=lambda: tf.no_op())
critic_op = policy._critic_optimizer.apply_gradients(
policy._critic_grads_and_vars)
# increment global step & apply ops
with tf.control_dependencies([tf.assign_add(policy.global_step, 1)]):
return tf.group(actor_op, critic_op)
def stats(policy, train_batch):
return {
"td_error": tf.reduce_mean(policy.td_error),
"actor_loss": tf.reduce_mean(policy.actor_loss),
"critic_loss": tf.reduce_mean(policy.critic_loss),
"mean_q": tf.reduce_mean(policy.q_t),
"max_q": tf.reduce_max(policy.q_t),
"min_q": tf.reduce_min(policy.q_t),
}
class ExplorationStateMixin(object):
def __init__(self, obs_space, action_space, config):
self.cur_noise_scale = 1.0
self.cur_pure_exploration_phase = False
self.stochastic = tf.get_variable(
initializer=tf.constant_initializer(True),
name="stochastic",
shape=(),
trainable=False,
dtype=tf.bool)
self.noise_scale = tf.get_variable(
initializer=tf.constant_initializer(self.cur_noise_scale),
name="noise_scale",
shape=(),
trainable=False,
dtype=tf.float32)
self.pure_exploration_phase = tf.get_variable(
initializer=tf.constant_initializer(
self.cur_pure_exploration_phase),
name="pure_exploration_phase",
shape=(),
trainable=False,
dtype=tf.bool)
def add_parameter_noise(self):
if self.config["parameter_noise"]:
self.get_session().run(self.model.add_noise_op)
def adjust_param_noise_sigma(self, sample_batch):
assert not tf.executing_eagerly(), "eager not supported with p noise"
# adjust the sigma of parameter space noise
states, noisy_actions = [
list(x) for x in sample_batch.columns(
[SampleBatch.CUR_OBS, SampleBatch.ACTIONS])
]
self.get_session().run(self.model.remove_noise_op)
clean_actions = self.get_session().run(
self.output_actions,
feed_dict={
self.get_placeholder(SampleBatch.CUR_OBS): states,
self.stochastic: False,
self.noise_scale: .0,
self.pure_exploration_phase: False,
})
distance_in_action_space = np.sqrt(
np.mean(np.square(clean_actions - noisy_actions)))
self.model.update_action_noise(
self.get_session(), distance_in_action_space,
self.config["exploration_ou_sigma"], self.cur_noise_scale)
def set_epsilon(self, epsilon):
# set_epsilon is called by optimizer to anneal exploration as
# necessary, and to turn it off during evaluation. The "epsilon" part
# is a carry-over from DQN, which uses epsilon-greedy exploration
# rather than adding action noise to the output of a policy network.
self.cur_noise_scale = epsilon
self.noise_scale.load(self.cur_noise_scale, self.get_session())
def set_pure_exploration_phase(self, pure_exploration_phase):
self.cur_pure_exploration_phase = pure_exploration_phase
self.pure_exploration_phase.load(self.cur_pure_exploration_phase,
self.get_session())
@override(Policy)
def get_state(self):
return [
TFPolicy.get_state(self), self.cur_noise_scale,
self.cur_pure_exploration_phase
]
@override(Policy)
def set_state(self, state):
TFPolicy.set_state(self, state[0])
self.set_epsilon(state[1])
self.set_pure_exploration_phase(state[2])
class TargetNetworkMixin(object):
def __init__(self, config):
@make_tf_callable(self.get_session())
def update_target_fn(tau):
tau = tf.convert_to_tensor(tau, dtype=tf.float32)
update_target_expr = []
model_vars = self.model.trainable_variables()
target_model_vars = self.target_model.trainable_variables()
assert len(model_vars) == len(target_model_vars), \
(model_vars, target_model_vars)
for var, var_target in zip(model_vars, target_model_vars):
update_target_expr.append(
var_target.assign(tau * var + (1.0 - tau) * var_target))
logger.debug("Update target op {}".format(var_target))
return tf.group(*update_target_expr)
# Hard initial update
self._do_update = update_target_fn
self.update_target(tau=1.0)
# support both hard and soft sync
def update_target(self, tau=None):
self._do_update(np.float32(tau or self.config.get("tau")))
class ActorCriticOptimizerMixin(object):
def __init__(self, config):
# create global step for counting the number of update operations
self.global_step = tf.train.get_or_create_global_step()
# use separate optimizers for actor & critic
self._actor_optimizer = tf.train.AdamOptimizer(
learning_rate=config["actor_lr"])
self._critic_optimizer = tf.train.AdamOptimizer(
learning_rate=config["critic_lr"])
class ComputeTDErrorMixin(object):
def __init__(self):
@make_tf_callable(self.get_session(), dynamic_shape=True)
def compute_td_error(obs_t, act_t, rew_t, obs_tp1, done_mask,
importance_weights):
if not self.loss_initialized():
return tf.zeros_like(rew_t)
# Do forward pass on loss to update td error attribute
actor_critic_loss(
self, self.model, None, {
SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
SampleBatch.DONES: tf.convert_to_tensor(done_mask),
PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
})
return self.td_error
self.compute_td_error = compute_td_error
def setup_early_mixins(policy, obs_space, action_space, config):
ExplorationStateMixin.__init__(policy, obs_space, action_space, config)
ActorCriticOptimizerMixin.__init__(policy, config)
def setup_mid_mixins(policy, obs_space, action_space, config):
ComputeTDErrorMixin.__init__(policy)
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, config)
DDPGTFPolicy = build_tf_policy(
name="DDPGTFPolicy",
get_default_config=lambda: ray.rllib.agents.ddpg.ddpg.DEFAULT_CONFIG,
make_model=build_ddpg_model,
postprocess_fn=postprocess_trajectory,
action_sampler_fn=build_action_output,
loss_fn=actor_critic_loss,
stats_fn=stats,
gradients_fn=gradients,
apply_gradients_fn=apply_gradients,
extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error},
mixins=[
TargetNetworkMixin, ExplorationStateMixin, ActorCriticOptimizerMixin,
ComputeTDErrorMixin
],
before_init=setup_early_mixins,
before_loss_init=setup_mid_mixins,
after_init=setup_late_mixins,
obs_include_prev_action_reward=False)