ray/test/stress_tests/test_many_tasks_and_transfers.py
Robert Nishihara 20b8b1d891 Add script for running stress tests. (#3378)
* Add script for running stress tests.

* Add an actor tree test where actors die with some probability

* Improve test.

* Small fix

* Update tests.

* Minor change
2018-11-27 04:28:02 -08:00

84 lines
2.6 KiB
Python

#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import logging
import time
import ray
logger = logging.getLogger(__name__)
ray.init(redis_address="localhost:6379")
# These numbers need to match the values in the autoscaler config file.
num_remote_nodes = 100
head_node_cpus = 2
num_remote_cpus = num_remote_nodes * head_node_cpus
# Wait until the expected number of nodes have joined the cluster.
while True:
if len(ray.global_state.client_table()) >= num_remote_nodes + 1:
break
logger.info("Nodes have all joined. There are {} resources."
.format(ray.global_state.cluster_resources()))
# Require 1 GPU to force the tasks to be on remote machines.
@ray.remote(num_gpus=1)
def f(size, *xs):
return np.ones(size, dtype=np.uint8)
# Require 1 GPU to force the actors to be on remote machines.
@ray.remote(num_cpus=1, num_gpus=1)
class Actor(object):
def method(self, size, *xs):
return np.ones(size, dtype=np.uint8)
# Launch a bunch of tasks.
start_time = time.time()
logger.info("Submitting many tasks.")
for i in range(10):
logger.info("Iteration {}".format(i))
ray.get([f.remote(0) for _ in range(100000)])
logger.info("Finished after {} seconds.".format(time.time() - start_time))
# Launch a bunch of tasks, each with a bunch of dependencies.
start_time = time.time()
logger.info("Submitting tasks with many dependencies.")
x_ids = []
for i in range(5):
logger.info("Iteration {}".format(i))
x_ids = [f.remote(0, *x_ids) for _ in range(10000)]
ray.get(x_ids)
logger.info("Finished after {} seconds.".format(time.time() - start_time))
# Create a bunch of actors.
start_time = time.time()
logger.info("Creating {} actors.".format(num_remote_cpus))
actors = [Actor.remote() for _ in range(num_remote_cpus)]
logger.info("Finished after {} seconds.".format(time.time() - start_time))
# Submit a bunch of small tasks to each actor.
start_time = time.time()
logger.info("Submitting many small actor tasks.")
x_ids = []
for _ in range(100000):
x_ids = [a.method.remote(0) for a in actors]
ray.get(x_ids)
logger.info("Finished after {} seconds.".format(time.time() - start_time))
# Submit a bunch of actor tasks with all-to-all communication.
start_time = time.time()
logger.info("Submitting actor tasks with all-to-all communication.")
x_ids = []
for _ in range(50):
for size_exponent in [0, 1, 2, 3, 4, 5, 6]:
x_ids = [a.method.remote(10**size_exponent, *x_ids) for a in actors]
ray.get(x_ids)
logger.info("Finished after {} seconds.".format(time.time() - start_time))