mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
91 lines
3.3 KiB
Python
91 lines
3.3 KiB
Python
import numpy as np
|
|
import scipy.signal
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
|
|
|
|
|
def discount_cumsum(x: np.ndarray, gamma: float) -> float:
|
|
"""Calculates the discounted cumulative sum over a reward sequence `x`.
|
|
|
|
y[t] - discount*y[t+1] = x[t]
|
|
reversed(y)[t] - discount*reversed(y)[t-1] = reversed(x)[t]
|
|
|
|
Args:
|
|
gamma (float): The discount factor gamma.
|
|
|
|
Returns:
|
|
float: The discounted cumulative sum over the reward sequence `x`.
|
|
"""
|
|
return scipy.signal.lfilter([1], [1, float(-gamma)], x[::-1], axis=0)[::-1]
|
|
|
|
|
|
class Postprocessing:
|
|
"""Constant definitions for postprocessing."""
|
|
|
|
ADVANTAGES = "advantages"
|
|
VALUE_TARGETS = "value_targets"
|
|
|
|
|
|
@DeveloperAPI
|
|
def compute_advantages(rollout: SampleBatch,
|
|
last_r: float,
|
|
gamma: float = 0.9,
|
|
lambda_: float = 1.0,
|
|
use_gae: bool = True,
|
|
use_critic: bool = True):
|
|
"""
|
|
Given a rollout, compute its value targets and the advantages.
|
|
|
|
Args:
|
|
rollout (SampleBatch): SampleBatch of a single trajectory.
|
|
last_r (float): Value estimation for last observation.
|
|
gamma (float): Discount factor.
|
|
lambda_ (float): Parameter for GAE.
|
|
use_gae (bool): Using Generalized Advantage Estimation.
|
|
use_critic (bool): Whether to use critic (value estimates). Setting
|
|
this to False will use 0 as baseline.
|
|
|
|
Returns:
|
|
SampleBatch (SampleBatch): Object with experience from rollout and
|
|
processed rewards.
|
|
"""
|
|
|
|
assert SampleBatch.VF_PREDS in rollout or not use_critic, \
|
|
"use_critic=True but values not found"
|
|
assert use_critic or not use_gae, \
|
|
"Can't use gae without using a value function"
|
|
|
|
if use_gae:
|
|
vpred_t = np.concatenate(
|
|
[rollout[SampleBatch.VF_PREDS],
|
|
np.array([last_r])])
|
|
delta_t = (
|
|
rollout[SampleBatch.REWARDS] + gamma * vpred_t[1:] - vpred_t[:-1])
|
|
# This formula for the advantage comes from:
|
|
# "Generalized Advantage Estimation": https://arxiv.org/abs/1506.02438
|
|
rollout[Postprocessing.ADVANTAGES] = discount_cumsum(
|
|
delta_t, gamma * lambda_)
|
|
rollout[Postprocessing.VALUE_TARGETS] = (
|
|
rollout[Postprocessing.ADVANTAGES] +
|
|
rollout[SampleBatch.VF_PREDS]).astype(np.float32)
|
|
else:
|
|
rewards_plus_v = np.concatenate(
|
|
[rollout[SampleBatch.REWARDS],
|
|
np.array([last_r])])
|
|
discounted_returns = discount_cumsum(rewards_plus_v,
|
|
gamma)[:-1].astype(np.float32)
|
|
|
|
if use_critic:
|
|
rollout[Postprocessing.
|
|
ADVANTAGES] = discounted_returns - rollout[SampleBatch.
|
|
VF_PREDS]
|
|
rollout[Postprocessing.VALUE_TARGETS] = discounted_returns
|
|
else:
|
|
rollout[Postprocessing.ADVANTAGES] = discounted_returns
|
|
rollout[Postprocessing.VALUE_TARGETS] = np.zeros_like(
|
|
rollout[Postprocessing.ADVANTAGES])
|
|
|
|
rollout[Postprocessing.ADVANTAGES] = rollout[
|
|
Postprocessing.ADVANTAGES].astype(np.float32)
|
|
|
|
return rollout
|