ray/rllib/agents/ppo/ppo.py

528 lines
21 KiB
Python

"""
Proximal Policy Optimization (PPO)
==================================
This file defines the distributed Trainer class for proximal policy
optimization.
See `ppo_[tf|torch]_policy.py` for the definition of the policy loss.
Detailed documentation: https://docs.ray.io/en/master/rllib-algorithms.html#ppo
"""
import logging
from typing import List, Optional, Type, Union
from ray.util.debug import log_once
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy
from ray.rllib.agents.trainer import Trainer
from ray.rllib.agents.trainer_config import TrainerConfig
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.rollout_ops import (
ParallelRollouts,
ConcatBatches,
StandardizeFields,
standardize_fields,
SelectExperiences,
)
from ray.rllib.execution.train_ops import (
TrainOneStep,
MultiGPUTrainOneStep,
train_one_step,
multi_gpu_train_one_step,
)
from ray.rllib.utils.annotations import ExperimentalAPI
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import Deprecated
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY
from ray.rllib.utils.typing import TrainerConfigDict, ResultDict
from ray.util.iter import LocalIterator
from ray.rllib.execution.rollout_ops import synchronous_parallel_sample
from ray.rllib.utils.metrics import (
NUM_AGENT_STEPS_SAMPLED,
NUM_ENV_STEPS_SAMPLED,
WORKER_UPDATE_TIMER,
)
logger = logging.getLogger(__name__)
class PPOConfig(TrainerConfig):
"""Defines a PPOTrainer configuration class from which a PPOTrainer can be built.
Example:
>>> config = PPOConfig(kl_coeff=0.3).training(gamma=0.9, lr=0.01)\
... .resources(num_gpus=0)\
... .rollouts(num_rollout_workers=4)
>>> print(config.to_dict())
>>> # Build a Trainer object from the config and run 1 training iteration.
>>> trainer = config.build(env="CartPole-v1")
>>> trainer.train()
Example:
>>> from ray import tune
>>> config = PPOConfig()
>>> # Print out some default values.
>>> print(config.clip_param)
>>> # Update the config object.
>>> config.training(lr=tune.grid_search([0.001, 0.0001]), clip_param=0.2)
>>> # Set the config object's env.
>>> config.environment(env="CartPole-v1")
>>> # Use to_dict() to get the old-style python config dict
>>> # when running with tune.
>>> tune.run(
... "PPO",
... stop={"episode_reward_mean": 200},
... config=config.to_dict(),
... )
"""
def __init__(self):
"""Initializes a PPOConfig instance."""
super().__init__(trainer_class=PPOTrainer)
# fmt: off
# __sphinx_doc_begin__
# PPO specific settings:
self.lr_schedule = None
self.use_critic = True
self.use_gae = True
self.lambda_ = 1.0
self.kl_coeff = 0.2
self.sgd_minibatch_size = 128
self.num_sgd_iter = 30
self.shuffle_sequences = True
self.vf_loss_coeff = 1.0
self.entropy_coeff = 0.0
self.entropy_coeff_schedule = None
self.clip_param = 0.3
self.vf_clip_param = 10.0
self.grad_clip = None
self.kl_target = 0.01
# Override some of TrainerConfig's default values with PPO-specific values.
self.rollout_fragment_length = 200
self.train_batch_size = 4000
self.lr = 5e-5
self.model["vf_share_layers"] = False
self._disable_execution_plan_api = True
# __sphinx_doc_end__
# fmt: on
@override(TrainerConfig)
def training(
self,
*,
lr_schedule: Optional[List[List[Union[int, float]]]] = None,
use_critic: Optional[bool] = None,
use_gae: Optional[bool] = None,
lambda_: Optional[float] = None,
kl_coeff: Optional[float] = None,
sgd_minibatch_size: Optional[int] = None,
num_sgd_iter: Optional[int] = None,
shuffle_sequences: Optional[bool] = None,
vf_loss_coeff: Optional[float] = None,
entropy_coeff: Optional[float] = None,
entropy_coeff_schedule: Optional[List[List[Union[int, float]]]] = None,
clip_param: Optional[float] = None,
vf_clip_param: Optional[float] = None,
grad_clip: Optional[float] = None,
kl_target: Optional[float] = None,
**kwargs,
) -> "PPOConfig":
"""Sets the training related configuration.
Args:
lr_schedule: Learning rate schedule. In the format of
[[timestep, lr-value], [timestep, lr-value], ...]
Intermediary timesteps will be assigned to interpolated learning rate
values. A schedule should normally start from timestep 0.
use_critic: Should use a critic as a baseline (otherwise don't use value
baseline; required for using GAE).
use_gae: If true, use the Generalized Advantage Estimator (GAE)
with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
lambda_: The GAE (lambda) parameter.
kl_coeff: Initial coefficient for KL divergence.
sgd_minibatch_size: Total SGD batch size across all devices for SGD.
This defines the minibatch size within each epoch.
num_sgd_iter: Number of SGD iterations in each outer loop (i.e., number of
epochs to execute per train batch).
shuffle_sequences: Whether to shuffle sequences in the batch when training
(recommended).
vf_loss_coeff: Coefficient of the value function loss. IMPORTANT: you must
tune this if you set vf_share_layers=True inside your model's config.
entropy_coeff: Coefficient of the entropy regularizer.
entropy_coeff_schedule: Decay schedule for the entropy regularizer.
clip_param: PPO clip parameter.
vf_clip_param: Clip param for the value function. Note that this is
sensitive to the scale of the rewards. If your expected V is large,
increase this.
grad_clip: If specified, clip the global norm of gradients by this amount.
kl_target: Target value for KL divergence.
Returns:
This updated TrainerConfig object.
"""
# Pass kwargs onto super's `training()` method.
super().training(**kwargs)
if lr_schedule is not None:
self.lr_schedule = lr_schedule
if use_critic is not None:
self.use_critic = use_critic
if use_gae is not None:
self.use_gae = use_gae
if lambda_ is not None:
self.lambda_ = lambda_
if kl_coeff is not None:
self.kl_coeff = kl_coeff
if sgd_minibatch_size is not None:
self.sgd_minibatch_size = sgd_minibatch_size
if num_sgd_iter is not None:
self.num_sgd_iter = num_sgd_iter
if shuffle_sequences is not None:
self.shuffle_sequences = shuffle_sequences
if vf_loss_coeff is not None:
self.vf_loss_coeff = vf_loss_coeff
if entropy_coeff is not None:
self.entropy_coeff = entropy_coeff
if entropy_coeff_schedule is not None:
self.entropy_coeff_schedule = entropy_coeff_schedule
if clip_param is not None:
self.clip_param = clip_param
if vf_clip_param is not None:
self.vf_clip_param = vf_clip_param
if grad_clip is not None:
self.grad_clip = grad_clip
if kl_target is not None:
self.kl_target = kl_target
return self
class UpdateKL:
"""Callback to update the KL based on optimization info.
This is used inside the execution_plan function. The Policy must define
a `update_kl` method for this to work. This is achieved for PPO via a
Policy mixin class (which adds the `update_kl` method),
defined in ppo_[tf|torch]_policy.py.
"""
def __init__(self, workers):
self.workers = workers
def __call__(self, fetches):
def update(pi, pi_id):
assert LEARNER_STATS_KEY not in fetches, (
"{} should be nested under policy id key".format(LEARNER_STATS_KEY),
fetches,
)
if pi_id in fetches:
kl = fetches[pi_id][LEARNER_STATS_KEY].get("kl")
assert kl is not None, (fetches, pi_id)
# Make the actual `Policy.update_kl()` call.
pi.update_kl(kl)
else:
logger.warning("No data for {}, not updating kl".format(pi_id))
# Update KL on all trainable policies within the local (trainer)
# Worker.
self.workers.local_worker().foreach_policy_to_train(update)
def warn_about_bad_reward_scales(config, result):
if result["policy_reward_mean"]:
return result # Punt on handling multiagent case.
# Warn about excessively high VF loss.
learner_info = result["info"][LEARNER_INFO]
if DEFAULT_POLICY_ID in learner_info:
scaled_vf_loss = (
config["vf_loss_coeff"]
* learner_info[DEFAULT_POLICY_ID][LEARNER_STATS_KEY]["vf_loss"]
)
policy_loss = learner_info[DEFAULT_POLICY_ID][LEARNER_STATS_KEY]["policy_loss"]
if config.get("model", {}).get("vf_share_layers") and scaled_vf_loss > 100:
logger.warning(
"The magnitude of your value function loss is extremely large "
"({}) compared to the policy loss ({}). This can prevent the "
"policy from learning. Consider scaling down the VF loss by "
"reducing vf_loss_coeff, or disabling vf_share_layers.".format(
scaled_vf_loss, policy_loss
)
)
# Warn about bad clipping configs
if config["vf_clip_param"] <= 0:
rew_scale = float("inf")
else:
rew_scale = round(
abs(result["episode_reward_mean"]) / config["vf_clip_param"], 0
)
if rew_scale > 200:
logger.warning(
"The magnitude of your environment rewards are more than "
"{}x the scale of `vf_clip_param`. ".format(rew_scale)
+ "This means that it will take more than "
"{} iterations for your value ".format(rew_scale)
+ "function to converge. If this is not intended, consider "
"increasing `vf_clip_param`."
)
return result
class PPOTrainer(Trainer):
# TODO: Change the return value of this method to return a TrainerConfig object
# instead.
@classmethod
@override(Trainer)
def get_default_config(cls) -> TrainerConfigDict:
return PPOConfig().to_dict()
@override(Trainer)
def validate_config(self, config: TrainerConfigDict) -> None:
"""Validates the Trainer's config dict.
Args:
config (TrainerConfigDict): The Trainer's config to check.
Raises:
ValueError: In case something is wrong with the config.
"""
# Call super's validation method.
super().validate_config(config)
if isinstance(config["entropy_coeff"], int):
config["entropy_coeff"] = float(config["entropy_coeff"])
if config["entropy_coeff"] < 0.0:
raise DeprecationWarning("entropy_coeff must be >= 0.0")
# SGD minibatch size must be smaller than train_batch_size (b/c
# we subsample a batch of `sgd_minibatch_size` from the train-batch for
# each `num_sgd_iter`).
# Note: Only check this if `train_batch_size` > 0 (DDPPO sets this
# to -1 to auto-calculate the actual batch size later).
if (
config["train_batch_size"] > 0
and config["sgd_minibatch_size"] > config["train_batch_size"]
):
raise ValueError(
"`sgd_minibatch_size` ({}) must be <= "
"`train_batch_size` ({}).".format(
config["sgd_minibatch_size"], config["train_batch_size"]
)
)
# Check for mismatches between `train_batch_size` and
# `rollout_fragment_length` and auto-adjust `rollout_fragment_length`
# if necessary.
# Note: Only check this if `train_batch_size` > 0 (DDPPO sets this
# to -1 to auto-calculate the actual batch size later).
num_workers = config["num_workers"] or 1
calculated_min_rollout_size = (
num_workers
* config["num_envs_per_worker"]
* config["rollout_fragment_length"]
)
if (
config["train_batch_size"] > 0
and config["train_batch_size"] % calculated_min_rollout_size != 0
):
new_rollout_fragment_length = config["train_batch_size"] // (
num_workers * config["num_envs_per_worker"]
)
logger.warning(
"`train_batch_size` ({}) cannot be achieved with your other "
"settings (num_workers={} num_envs_per_worker={} "
"rollout_fragment_length={})! Auto-adjusting "
"`rollout_fragment_length` to {}.".format(
config["train_batch_size"],
config["num_workers"],
config["num_envs_per_worker"],
config["rollout_fragment_length"],
new_rollout_fragment_length,
)
)
config["rollout_fragment_length"] = new_rollout_fragment_length
# Episodes may only be truncated (and passed into PPO's
# `postprocessing_fn`), iff generalized advantage estimation is used
# (value function estimate at end of truncated episode to estimate
# remaining value).
if config["batch_mode"] == "truncate_episodes" and not config["use_gae"]:
raise ValueError(
"Episode truncation is not supported without a value "
"function (to estimate the return at the end of the truncated"
" trajectory). Consider setting "
"batch_mode=complete_episodes."
)
# Multi-agent mode and multi-GPU optimizer.
if config["multiagent"]["policies"] and not config["simple_optimizer"]:
logger.info(
"In multi-agent mode, policies will be optimized sequentially"
" by the multi-GPU optimizer. Consider setting "
"simple_optimizer=True if this doesn't work for you."
)
@override(Trainer)
def get_default_policy_class(self, config: TrainerConfigDict) -> Type[Policy]:
if config["framework"] == "torch":
from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy
return PPOTorchPolicy
else:
return PPOTFPolicy
@ExperimentalAPI
def training_iteration(self) -> ResultDict:
# Collect SampleBatches from sample workers until we have a full batch.
if self._by_agent_steps:
train_batch = synchronous_parallel_sample(
worker_set=self.workers, max_agent_steps=self.config["train_batch_size"]
)
else:
train_batch = synchronous_parallel_sample(
worker_set=self.workers, max_env_steps=self.config["train_batch_size"]
)
train_batch = train_batch.as_multi_agent()
self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps()
self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps()
# Standardize advantages
train_batch = standardize_fields(train_batch, ["advantages"])
# Train
if self.config["simple_optimizer"]:
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
global_vars = {
"timestep": self._counters[NUM_AGENT_STEPS_SAMPLED],
}
# Update weights - after learning on the local worker - on all remote
# workers.
if self.workers.remote_workers():
with self._timers[WORKER_UPDATE_TIMER]:
self.workers.sync_weights(global_vars=global_vars)
# For each policy: update KL scale and warn about possible issues
for policy_id, policy_info in train_results.items():
# Update KL loss with dynamic scaling
# for each (possibly multiagent) policy we are training
kl_divergence = policy_info[LEARNER_STATS_KEY].get("kl")
self.get_policy(policy_id).update_kl(kl_divergence)
# Warn about excessively high value function loss
scaled_vf_loss = (
self.config["vf_loss_coeff"] * policy_info[LEARNER_STATS_KEY]["vf_loss"]
)
policy_loss = policy_info[LEARNER_STATS_KEY]["policy_loss"]
if (
log_once("ppo_warned_lr_ratio")
and self.config.get("model", {}).get("vf_share_layers")
and scaled_vf_loss > 100
):
logger.warning(
"The magnitude of your value function loss for policy: {} is "
"extremely large ({}) compared to the policy loss ({}). This "
"can prevent the policy from learning. Consider scaling down "
"the VF loss by reducing vf_loss_coeff, or disabling "
"vf_share_layers.".format(policy_id, scaled_vf_loss, policy_loss)
)
# Warn about bad clipping configs.
train_batch.policy_batches[policy_id].set_get_interceptor(None)
mean_reward = train_batch.policy_batches[policy_id]["rewards"].mean()
if (
log_once("ppo_warned_vf_clip")
and mean_reward > self.config["vf_clip_param"]
):
self.warned_vf_clip = True
logger.warning(
f"The mean reward returned from the environment is {mean_reward}"
f" but the vf_clip_param is set to {self.config['vf_clip_param']}."
f" Consider increasing it for policy: {policy_id} to improve"
" value function convergence."
)
# Update global vars on local worker as well.
self.workers.local_worker().set_global_vars(global_vars)
return train_results
@staticmethod
@override(Trainer)
def execution_plan(
workers: WorkerSet, config: TrainerConfigDict, **kwargs
) -> LocalIterator[dict]:
assert (
len(kwargs) == 0
), "PPO execution_plan does NOT take any additional parameters"
rollouts = ParallelRollouts(workers, mode="bulk_sync")
# Collect batches for the trainable policies.
rollouts = rollouts.for_each(
SelectExperiences(local_worker=workers.local_worker())
)
# Concatenate the SampleBatches into one.
rollouts = rollouts.combine(
ConcatBatches(
min_batch_size=config["train_batch_size"],
count_steps_by=config["multiagent"]["count_steps_by"],
)
)
# Standardize advantages.
rollouts = rollouts.for_each(StandardizeFields(["advantages"]))
# Perform one training step on the combined + standardized batch.
if config["simple_optimizer"]:
train_op = rollouts.for_each(
TrainOneStep(
workers,
num_sgd_iter=config["num_sgd_iter"],
sgd_minibatch_size=config["sgd_minibatch_size"],
)
)
else:
train_op = rollouts.for_each(
MultiGPUTrainOneStep(
workers=workers,
sgd_minibatch_size=config["sgd_minibatch_size"],
num_sgd_iter=config["num_sgd_iter"],
num_gpus=config["num_gpus"],
_fake_gpus=config["_fake_gpus"],
)
)
# Update KL after each round of training.
train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))
# Warn about bad reward scales and return training metrics.
return StandardMetricsReporting(train_op, workers, config).for_each(
lambda result: warn_about_bad_reward_scales(config, result)
)
# Deprecated: Use ray.rllib.agents.ppo.PPOConfig instead!
class _deprecated_default_config(dict):
def __init__(self):
super().__init__(PPOConfig().to_dict())
@Deprecated(
old="ray.rllib.agents.ppo.ppo.DEFAULT_CONFIG",
new="ray.rllib.agents.ppo.ppo.PPOConfig(...)",
error=False,
)
def __getitem__(self, item):
return super().__getitem__(item)
DEFAULT_CONFIG = _deprecated_default_config()