ray/rllib/examples/custom_keras_model.py

145 lines
5 KiB
Python

"""Example of using a custom ModelV2 Keras-style model."""
import argparse
import os
import ray
from ray import tune
from ray.rllib.algorithms.dqn.distributional_q_tf_model import DistributionalQTFModel
from ray.rllib.models import ModelCatalog
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.visionnet import VisionNetwork as MyVisionNetwork
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="DQN", help="The RLlib-registered algorithm to use."
)
parser.add_argument("--stop", type=int, default=200)
parser.add_argument("--use-vision-network", action="store_true")
parser.add_argument("--num-cpus", type=int, default=0)
class MyKerasModel(TFModelV2):
"""Custom model for policy gradient algorithms."""
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
super(MyKerasModel, self).__init__(
obs_space, action_space, num_outputs, model_config, name
)
self.inputs = tf.keras.layers.Input(shape=obs_space.shape, name="observations")
layer_1 = tf.keras.layers.Dense(
128,
name="my_layer1",
activation=tf.nn.relu,
kernel_initializer=normc_initializer(1.0),
)(self.inputs)
layer_out = tf.keras.layers.Dense(
num_outputs,
name="my_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(layer_1)
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(layer_1)
self.base_model = tf.keras.Model(self.inputs, [layer_out, value_out])
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model(input_dict["obs"])
return model_out, state
def value_function(self):
return tf.reshape(self._value_out, [-1])
def metrics(self):
return {"foo": tf.constant(42.0)}
class MyKerasQModel(DistributionalQTFModel):
"""Custom model for DQN."""
def __init__(self, obs_space, action_space, num_outputs, model_config, name, **kw):
super(MyKerasQModel, self).__init__(
obs_space, action_space, num_outputs, model_config, name, **kw
)
# Define the core model layers which will be used by the other
# output heads of DistributionalQModel
self.inputs = tf.keras.layers.Input(shape=obs_space.shape, name="observations")
layer_1 = tf.keras.layers.Dense(
128,
name="my_layer1",
activation=tf.nn.relu,
kernel_initializer=normc_initializer(1.0),
)(self.inputs)
layer_out = tf.keras.layers.Dense(
num_outputs,
name="my_out",
activation=tf.nn.relu,
kernel_initializer=normc_initializer(1.0),
)(layer_1)
self.base_model = tf.keras.Model(self.inputs, layer_out)
# Implement the core forward method.
def forward(self, input_dict, state, seq_lens):
model_out = self.base_model(input_dict["obs"])
return model_out, state
def metrics(self):
return {"foo": tf.constant(42.0)}
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
ModelCatalog.register_custom_model(
"keras_model", MyVisionNetwork if args.use_vision_network else MyKerasModel
)
ModelCatalog.register_custom_model(
"keras_q_model", MyVisionNetwork if args.use_vision_network else MyKerasQModel
)
# Tests https://github.com/ray-project/ray/issues/7293
def check_has_custom_metric(result):
r = result["result"]["info"][LEARNER_INFO]
if DEFAULT_POLICY_ID in r:
r = r[DEFAULT_POLICY_ID].get(LEARNER_STATS_KEY, r[DEFAULT_POLICY_ID])
assert r["model"]["foo"] == 42, result
if args.run == "DQN":
extra_config = {"replay_buffer_config": {"learning_starts": 0}}
else:
extra_config = {}
tune.run(
args.run,
stop={"episode_reward_mean": args.stop},
config=dict(
extra_config,
**{
"env": "BreakoutNoFrameskip-v4"
if args.use_vision_network
else "CartPole-v0",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"callbacks": {
"on_train_result": check_has_custom_metric,
},
"model": {
"custom_model": "keras_q_model"
if args.run == "DQN"
else "keras_model"
},
"framework": "tf",
}
),
)