ray/release/air_tests/air_benchmarks/workloads/benchmark_util.py
xwjiang2010 75027eb479
[air/benchmarks] train/tune benchmark (#26564)
Making sure that tuning multiple trials in parallel is not significantly slower than training each individual trials.
Some overhead is expected.

Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
Signed-off-by: Kai Fricke <kai@anyscale.com>

Co-authored-by: Jimmy Yao <jiahaoyao.math@gmail.com>
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Kai Fricke <kai@anyscale.com>
2022-07-19 18:24:39 +01:00

159 lines
4.1 KiB
Python

import os
import socket
import subprocess
from collections import defaultdict
from contextlib import closing
from pathlib import Path
import ray
from typing import List, Dict, Union, Callable
def _schedule_remote_fn_on_node(node_ip: str, remote_fn, *args, **kwargs):
return remote_fn.options(resources={f"node:{node_ip}": 0.01}).remote(
*args,
**kwargs,
)
def schedule_remote_fn_on_all_nodes(
remote_fn, exclude_head: bool = False, *args, **kwargs
):
head_ip = ray.util.get_node_ip_address()
futures = []
for node in ray.nodes():
if not node["Alive"]:
continue
node_ip = node["NodeManagerAddress"]
if exclude_head and node_ip == head_ip:
continue
future = _schedule_remote_fn_on_node(node_ip, remote_fn, *args, **kwargs)
futures.append(future)
return futures
@ray.remote
def _write(stream: bytes, path: str):
Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as f:
f.write(stream)
def upload_file_to_all_nodes(path: str):
path = os.path.abspath(path)
with open(path, "rb") as f:
stream = f.read()
futures = schedule_remote_fn_on_all_nodes(
_write, exclude_head=True, stream=stream, path=path
)
return ray.get(futures)
@ray.remote
def _run_command(cmd: str):
return subprocess.check_call(cmd)
def run_command_on_all_nodes(cmd: List[str]):
futures = schedule_remote_fn_on_all_nodes(_run_command, cmd=cmd)
return ray.get(futures)
@ray.remote
class CommandRunner:
def run_command(self, cmd: str):
return subprocess.check_call(cmd)
def run_fn(self, fn: Callable, *args, **kwargs):
return fn(*args, **kwargs)
def create_actors_with_resources(
num_actors: int, resources: Dict[str, Union[float, int]]
) -> List[ray.actor.ActorHandle]:
num_cpus = resources.pop("CPU", 1)
num_gpus = resources.pop("GPU", 0)
return [
CommandRunner.options(
num_cpus=num_cpus, num_gpus=num_gpus, resources=resources
).remote()
for _ in range(num_actors)
]
def run_commands_on_actors(actors: List[ray.actor.ActorHandle], cmds: List[List[str]]):
assert len(actors) == len(cmds)
futures = []
for actor, cmd in zip(actors, cmds):
futures.append(actor.run_command.remote(cmd))
return ray.get(futures)
def run_fn_on_actors(
actors: List[ray.actor.ActorHandle], fn: Callable, *args, **kwargs
):
futures = []
for actor in actors:
futures.append(actor.run_fn.remote(fn, *args, **kwargs))
return ray.get(futures)
def get_ip_port_actors(actors: List[ray.actor.ActorHandle]) -> List[str]:
# We need this wrapper to avoid deserialization issues with benchmark_util.py
def get_ip_port():
ip = ray.util.get_node_ip_address()
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(("localhost", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
port = s.getsockname()[1]
return ip, port
return run_fn_on_actors(actors=actors, fn=get_ip_port)
def get_gpu_ids_actors(actors: List[ray.actor.ActorHandle]) -> List[List[int]]:
# We need this wrapper to avoid deserialization issues with benchmark_util.py
def get_gpu_ids():
return ray.get_gpu_ids()
return run_fn_on_actors(actors=actors, fn=get_gpu_ids)
def map_ips_to_gpus(ips: List[str], gpus: List[List[int]]):
assert len(ips) == len(gpus)
map = defaultdict(set)
for ip, gpu in zip(ips, gpus):
map[ip].update(set(gpu))
return {ip: sorted(gpus) for ip, gpus in map.items()}
def set_cuda_visible_devices(
actors: List[ray.actor.ActorHandle],
actor_ips: List[str],
ip_to_gpus: Dict[str, set],
):
assert len(actors) == len(actor_ips)
def set_env(key: str, val: str):
os.environ[key] = val
futures = []
for actor, ip in zip(actors, actor_ips):
assert ip in ip_to_gpus
gpu_str = ",".join([str(device) for device in sorted(ip_to_gpus[ip])])
future = actor.run_fn.remote(set_env, "CUDA_VISIBLE_DEVICES", gpu_str)
futures.append(future)
ray.get(futures)