ray/rllib
Eric Liang 288933ec6b
[rllib] Fix shared metrics context in parallel iterators (#7666)
* debug

* build

* update

* wip

* wpi

* update

* recurisve sync

* comment

* stream

* fix

* Update .travis.yml
2020-03-22 14:15:01 -07:00
..
agents [rllib] Fix shared metrics context in parallel iterators (#7666) 2020-03-22 14:15:01 -07:00
contrib [rllib] Rename sample_batch_size => rollout_fragment_length (#7503) 2020-03-14 12:05:04 -07:00
env [rllib] Add high-performance external application connector (#7641) 2020-03-20 12:43:57 -07:00
evaluation [rllib] Add high-performance external application connector (#7641) 2020-03-20 12:43:57 -07:00
examples [rllib] Add high-performance external application connector (#7641) 2020-03-20 12:43:57 -07:00
models [RLlib] Cleanup/unify all test cases. (#7533) 2020-03-11 20:39:47 -07:00
offline [RLlib] DDPG refactor and Exploration API action noise classes. (#7314) 2020-03-01 11:53:35 -08:00
optimizers [rllib] Rename sample_batch_size => rollout_fragment_length (#7503) 2020-03-14 12:05:04 -07:00
policy [Ray RLlib] Fix tree import (#7662) 2020-03-22 13:51:24 -07:00
tests Change /tmp to platform-specific temporary directory (#7529) 2020-03-16 18:10:14 -07:00
tuned_examples [rllib] Rename sample_batch_size => rollout_fragment_length (#7503) 2020-03-14 12:05:04 -07:00
utils [rllib] Fix shared metrics context in parallel iterators (#7666) 2020-03-22 14:15:01 -07:00
__init__.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
asv.conf.json [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
BUILD [rllib] Add back get_policy_output method for SAC model (#7604) 2020-03-20 12:44:04 -07:00
README.md MADDPG implementation in RLlib (#5348) 2019-08-06 16:22:06 -07:00
rollout.py [RLlib] Issue 7136: rollout not working for ES and ARS. (#7444) 2020-03-04 23:57:44 -08:00
scripts.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
train.py [RLlib] Move all jenkins RLlib-tests into bazel (rllib/BUILD). (#7178) 2020-02-15 14:50:44 -08:00

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a unified API for a variety of applications.

For an overview of RLlib, see the documentation.

If you've found RLlib useful for your research, you can cite the paper as follows:

@inproceedings{liang2018rllib,
    Author = {Eric Liang and
              Richard Liaw and
              Robert Nishihara and
              Philipp Moritz and
              Roy Fox and
              Ken Goldberg and
              Joseph E. Gonzalez and
              Michael I. Jordan and
              Ion Stoica},
    Title = {{RLlib}: Abstractions for Distributed Reinforcement Learning},
    Booktitle = {International Conference on Machine Learning ({ICML})},
    Year = {2018}
}

Development Install

You can develop RLlib locally without needing to compile Ray by using the setup-dev.py script. This sets up links between the rllib dir in your git repo and the one bundled with the ray package. When using this script, make sure that your git branch is in sync with the installed Ray binaries (i.e., you are up-to-date on master and have the latest wheel installed.)