ray/release/.buildkite/build_pipeline.py
2022-03-11 01:32:10 +09:00

680 lines
22 KiB
Python

import copy
import logging
import os
import re
import sys
import yaml
# If you update or reorganize the periodic tests, please ensure the
# relevant portions of the Ray release instructions (go/release-ray)
# (in particular, running periodic tests and collecting release logs)
# are up to date. If you need access, please contact @zhe-thoughts.
# Env variables:
# RAY_REPO Repo to use for finding the wheel
# RAY_BRANCH Branch to find the wheel
# RAY_VERSION Version to find the wheel
# RAY_WHEELS Direct Ray wheel URL
# RAY_TEST_REPO Repo to use for test scripts
# RAY_TEST_BRANCH Branch for test scripts
# FILTER_FILE File filter
# FILTER_TEST Test name filter
# RELEASE_TEST_SUITE Release test suite (e.g. manual, nightly)
class ReleaseTest:
def __init__(
self,
name: str,
smoke_test: bool = False,
retry: int = 0,
):
self.name = name
self.smoke_test = smoke_test
self.retry = retry
def __str__(self):
return self.name
def __repr__(self):
return self.name
def __contains__(self, item):
return self.name.__contains__(item)
def __iter__(self):
return iter(self.name)
def __len__(self):
return len(self.name)
class SmokeTest(ReleaseTest):
def __init__(self, name: str, retry: int = 0):
super(SmokeTest, self).__init__(name=name, smoke_test=True, retry=retry)
CORE_NIGHTLY_TESTS = {
"~/ray/release/nightly_tests/nightly_tests.yaml": [
# "shuffle_10gb",
# "shuffle_50gb",
# "shuffle_50gb_large_partition",
# "shuffle_100gb",
# "non_streaming_shuffle_100gb",
# "non_streaming_shuffle_50gb_large_partition",
# "non_streaming_shuffle_50gb",
# SmokeTest("dask_on_ray_large_scale_test_no_spilling"),
# SmokeTest("dask_on_ray_large_scale_test_spilling"),
# "stress_test_placement_group",
# "shuffle_1tb_1000_partition",
# "non_streaming_shuffle_1tb_1000_partition",
# "shuffle_1tb_5000_partitions",
# TODO(sang): It doesn't even work without spilling
# as it hits the scalability limit.
# "non_streaming_shuffle_1tb_5000_partitions",
# "decision_tree_autoscaling",
# "decision_tree_autoscaling_20_runs",
# "autoscaling_shuffle_1tb_1000_partitions",
# SmokeTest("stress_test_many_tasks"),
# SmokeTest("stress_test_dead_actors"),
# SmokeTest("threaded_actors_stress_test"),
# "pg_long_running_performance_test",
],
# "~/ray/benchmarks/benchmark_tests.yaml": [
# "single_node",
# "object_store",
# "many_actors_smoke_test",
# "many_tasks_smoke_test",
# "many_pgs_smoke_test",
# ],
"~/ray/release/nightly_tests/dataset/dataset_test.yaml": [
"inference",
"shuffle_data_loader",
"parquet_metadata_resolution",
"pipelined_training_50_gb",
"pipelined_ingestion_1500_gb",
"datasets_preprocess_ingest",
"datasets_ingest_400G",
SmokeTest("datasets_ingest_train_infer"),
],
"~/ray/release/nightly_tests/chaos_test.yaml": [
"chaos_many_actors",
"chaos_many_tasks_no_object_store",
"chaos_pipelined_ingestion_1500_gb_15_windows",
],
# "~/ray/release/microbenchmark/microbenchmark.yaml": [
# "microbenchmark",
# ],
}
SERVE_NIGHTLY_TESTS = {
"~/ray/release/long_running_tests/long_running_tests.yaml": [
SmokeTest("serve"),
SmokeTest("serve_failure"),
],
# "~/ray/release/serve_tests/serve_tests.yaml": [
# "single_deployment_1k_noop_replica",
# "multi_deployment_1k_noop_replica",
# "autoscaling_single_deployment",
# "autoscaling_multi_deployment",
# "serve_micro_benchmark",
# # TODO(architkulkarni) Reenable after K8s migration. Currently failing
# # "serve_micro_benchmark_k8s",
# "serve_cluster_fault_tolerance",
# ],
}
CORE_DAILY_TESTS = {
# "~/ray/release/nightly_tests/nightly_tests.yaml": [
# "k8s_dask_on_ray_large_scale_test_no_spilling",
# "dask_on_ray_large_scale_test_no_spilling",
# "dask_on_ray_large_scale_test_spilling",
# "pg_autoscaling_regression_test",
# "threaded_actors_stress_test",
# "k8s_threaded_actors_stress_test",
# "stress_test_many_tasks",
# "stress_test_dead_actors",
# ],
"~/ray/release/nightly_tests/chaos_test.yaml": [
"chaos_dask_on_ray_large_scale_test_no_spilling",
"chaos_dask_on_ray_large_scale_test_spilling",
],
}
CORE_SCALABILITY_TESTS_DAILY = {
# "~/ray/benchmarks/benchmark_tests.yaml": [
# "many_actors",
# "many_tasks",
# "many_pgs",
# "many_nodes",
# ],
}
CORE_SCHEDULING_DAILY = {
# "~/ray/benchmarks/benchmark_tests.yaml": [
# "scheduling_test_many_0s_tasks_single_node",
# "scheduling_test_many_0s_tasks_many_nodes",
# # Reenable these two once we got right setup
# # "scheduling_test_many_5s_tasks_single_node",
# # "scheduling_test_many_5s_tasks_many_nodes",
# ],
# "~/ray/release/nightly_tests/nightly_tests.yaml": [
# "many_nodes_actor_test",
# "dask_on_ray_10gb_sort",
# "dask_on_ray_100gb_sort",
# "dask_on_ray_1tb_sort",
# "placement_group_performance_test",
# ],
}
NIGHTLY_TESTS = {
# "~/ray/release/horovod_tests/horovod_tests.yaml": [
# SmokeTest("horovod_test"),
# ], # Should we enable this?
"~/ray/release/golden_notebook_tests/golden_notebook_tests.yaml": [
"dask_xgboost_test",
"modin_xgboost_test",
"torch_tune_serve_test",
],
"~/ray/release/long_running_tests/long_running_tests.yaml": [
SmokeTest("actor_deaths"),
SmokeTest("apex"),
SmokeTest("impala"),
SmokeTest("many_actor_tasks"),
SmokeTest("many_drivers"),
SmokeTest("many_ppo"),
SmokeTest("many_tasks"),
SmokeTest("many_tasks_serialized_ids"),
SmokeTest("node_failures"),
SmokeTest("pbt"),
# SmokeTest("serve"),
# SmokeTest("serve_failure"),
# Full long running tests (1 day runtime)
"actor_deaths",
"apex",
"impala",
"many_actor_tasks",
"many_drivers",
"many_ppo",
"many_tasks",
"many_tasks_serialized_ids",
"node_failures",
"pbt",
"serve",
"serve_failure",
],
# "~/ray/release/sgd_tests/sgd_tests.yaml": [
# "sgd_gpu",
# ],
# "~/ray/release/tune_tests/cloud_tests/tune_cloud_tests.yaml": [
# "aws_no_sync_down",
# "aws_ssh_sync",
# "aws_durable_upload",
# "aws_durable_upload_rllib_str",
# "aws_durable_upload_rllib_trainer",
# "gcp_k8s_durable_upload",
# ],
# "~/ray/release/tune_tests/scalability_tests/tune_tests.yaml": [
# "bookkeeping_overhead",
# "durable_trainable",
# SmokeTest("long_running_large_checkpoints"),
# SmokeTest("network_overhead"),
# "result_throughput_cluster",
# "result_throughput_single_node",
# ],
# "~/ray/release/xgboost_tests/xgboost_tests.yaml": [
# "train_small",
# "train_moderate",
# "train_gpu",
# "tune_small",
# "tune_4x32",
# "tune_32x4",
# "ft_small_elastic",
# "ft_small_non_elastic",
# "distributed_api_test",
# ],
# "~/ray/release/rllib_tests/rllib_tests.yaml": [
# SmokeTest("learning_tests"),
# SmokeTest("stress_tests"),
# "performance_tests",
# "multi_gpu_learning_tests",
# "multi_gpu_with_lstm_learning_tests",
# "multi_gpu_with_attention_learning_tests",
# # We'll have these as per-PR tests soon.
# # "example_scripts_on_gpu_tests",
# ],
# "~/ray/release/runtime_env_tests/runtime_env_tests.yaml": [
# "rte_many_tasks_actors",
# "wheel_urls",
# "rte_ray_client",
# ],
}
WEEKLY_TESTS = {
"~/ray/release/horovod_tests/horovod_tests.yaml": [
"horovod_test",
],
"~/ray/release/long_running_distributed_tests"
"/long_running_distributed.yaml": [
"pytorch_pbt_failure",
],
# "~/ray/release/tune_tests/scalability_tests/tune_tests.yaml": [
# "network_overhead",
# "long_running_large_checkpoints",
# "xgboost_sweep",
# ],
# "~/ray/release/rllib_tests/rllib_tests.yaml": [
# "learning_tests",
# "stress_tests",
# ],
}
# This test suite holds "user" tests to test important user workflows
# in a particular environment.
# All workloads in this test suite should:
# 1. Be run in a distributed (multi-node) fashion
# 2. Use autoscaling/scale up (no wait_cluster.py)
# 3. Use GPUs if applicable
# 4. Have the `use_connect` flag set.
USER_TESTS = {
"~/ray/release/ml_user_tests/ml_user_tests.yaml": [
"train_tensorflow_mnist_test",
"train_torch_linear_test",
"ray_lightning_user_test_latest",
"ray_lightning_user_test_master",
"horovod_user_test_latest",
"horovod_user_test_master",
"xgboost_gpu_connect_latest",
"xgboost_gpu_connect_master",
"tune_rllib_connect_test",
]
}
SUITES = {
"core-nightly": CORE_NIGHTLY_TESTS,
"serve-nightly": SERVE_NIGHTLY_TESTS,
"core-daily": CORE_DAILY_TESTS,
"core-scalability": CORE_SCALABILITY_TESTS_DAILY,
"nightly": {**NIGHTLY_TESTS, **USER_TESTS},
"core-scheduling-daily": CORE_SCHEDULING_DAILY,
"weekly": WEEKLY_TESTS,
}
DEFAULT_STEP_TEMPLATE = {
"env": {
"ANYSCALE_CLOUD_ID": "cld_4F7k8814aZzGG8TNUGPKnc",
"ANYSCALE_PROJECT": "prj_2xR6uT6t7jJuu1aCwWMsle",
"RELEASE_AWS_BUCKET": "ray-release-automation-results",
"RELEASE_AWS_LOCATION": "dev",
"RELEASE_AWS_DB_NAME": "ray_ci",
"RELEASE_AWS_DB_TABLE": "release_test_result",
"AWS_REGION": "us-west-2",
},
"agents": {"queue": "runner_queue_branch"},
"plugins": [
{
"docker#v3.9.0": {
"image": "rayproject/ray",
"propagate-environment": True,
"volumes": [
"/tmp/ray_release_test_artifacts:" "/tmp/ray_release_test_artifacts"
],
}
}
],
"artifact_paths": ["/tmp/ray_release_test_artifacts/**/*"],
}
def ask_configuration():
RAY_BRANCH = os.environ.get("RAY_BRANCH", "master")
RAY_REPO = os.environ.get("RAY_REPO", "https://github.com/ray-project/ray.git")
RAY_VERSION = os.environ.get("RAY_VERSION", "")
RAY_WHEELS = os.environ.get("RAY_WHEELS", "")
RAY_TEST_BRANCH = os.environ.get("RAY_TEST_BRANCH", RAY_BRANCH)
RAY_TEST_REPO = os.environ.get("RAY_TEST_REPO", RAY_REPO)
RELEASE_TEST_SUITE = os.environ.get("RELEASE_TEST_SUITE", "nightly")
FILTER_FILE = os.environ.get("FILTER_FILE", "")
FILTER_TEST = os.environ.get("FILTER_TEST", "")
input_ask_step = {
"input": "Input required: Please specify tests to run",
"fields": [
{
"text": (
"RAY_REPO: Please specify the Ray repository used "
"to find the wheel."
),
"hint": (
"Repository from which to fetch the latest "
"commits to find the Ray wheels. Usually you don't "
"need to change this."
),
"default": RAY_REPO,
"key": "ray_repo",
},
{
"text": (
"RAY_BRANCH: Please specify the Ray branch used "
"to find the wheel."
),
"hint": "For releases, this will be e.g. `releases/1.x.0`",
"default": RAY_BRANCH,
"key": "ray_branch",
},
{
"text": (
"RAY_VERSION: Please specify the Ray version used "
"to find the wheel."
),
"hint": (
"Leave empty for latest master. For releases, "
"specify the release version."
),
"required": False,
"default": RAY_VERSION,
"key": "ray_version",
},
{
"text": "RAY_WHEELS: Please specify the Ray wheel URL.",
"hint": (
"ATTENTION: If you provide this, RAY_REPO, "
"RAY_BRANCH and RAY_VERSION will be ignored! "
"Please also make sure to provide the wheels URL "
"for Python 3.7 on Linux.\n"
"You can also insert a commit hash here instead "
"of a full URL.\n"
"NOTE: You can specify multiple commits or URLs "
"for easy bisection (one per line) - this will "
"run each test on each of the specified wheels."
),
"required": False,
"default": RAY_WHEELS,
"key": "ray_wheels",
},
{
"text": (
"RAY_TEST_REPO: Please specify the Ray repository "
"used to find the tests you would like to run."
),
"hint": (
"If you're developing a new release test, this "
"will most likely be your GitHub fork."
),
"default": RAY_TEST_REPO,
"key": "ray_test_repo",
},
{
"text": (
"RAY_TEST_BRANCH: Please specify the Ray branch used "
"to find the tests you would like to run."
),
"hint": (
"If you're developing a new release test, this "
"will most likely be a branch living on your "
"GitHub fork."
),
"default": RAY_TEST_BRANCH,
"key": "ray_test_branch",
},
{
"select": (
"RELEASE_TEST_SUITE: Please specify the release "
"test suite containing the tests you would like "
"to run."
),
"hint": (
"Check in the `build_pipeline.py` if you're "
"unsure which suite contains your tests."
),
"required": True,
"options": sorted(SUITES.keys()),
"default": RELEASE_TEST_SUITE,
"key": "release_test_suite",
},
{
"text": (
"FILTER_FILE: Please specify a filter for the "
"test files that should be included in this build."
),
"hint": (
"Only test files (e.g. xgboost_tests.yml) that "
"match this string will be included in the test"
),
"default": FILTER_FILE,
"required": False,
"key": "filter_file",
},
{
"text": (
"FILTER_TEST: Please specify a filter for the "
"test names that should be included in this build."
),
"hint": (
"Only test names (e.g. tune_4x32) that match "
"this string will be included in the test"
),
"default": FILTER_TEST,
"required": False,
"key": "filter_test",
},
],
"key": "input_ask_step",
}
run_again_step = {
"commands": [
f'export {v}=$(buildkite-agent meta-data get "{k}")'
for k, v in {
"ray_branch": "RAY_BRANCH",
"ray_repo": "RAY_REPO",
"ray_version": "RAY_VERSION",
"ray_wheels": "RAY_WHEELS",
"ray_test_branch": "RAY_TEST_BRANCH",
"ray_test_repo": "RAY_TEST_REPO",
"release_test_suite": "RELEASE_TEST_SUITE",
"filter_file": "FILTER_FILE",
"filter_test": "FILTER_TEST",
}.items()
]
+ [
"export AUTOMATIC=1",
"python3 -m pip install --user pyyaml",
"rm -rf ~/ray || true",
"git clone -b $${RAY_TEST_BRANCH} $${RAY_TEST_REPO} ~/ray",
(
"python3 ~/ray/release/.buildkite/build_pipeline.py "
"| buildkite-agent pipeline upload"
),
],
"label": ":pipeline: Again",
"agents": {"queue": "runner_queue_branch"},
"depends_on": "input_ask_step",
"key": "run_again_step",
}
return [
input_ask_step,
run_again_step,
]
def create_test_step(
ray_repo: str,
ray_branch: str,
ray_version: str,
ray_wheels: str,
ray_test_repo: str,
ray_test_branch: str,
test_file: str,
test_name: ReleaseTest,
):
custom_commit_str = "custom_wheels_url"
if ray_wheels:
# Extract commit from url
p = re.compile(r"([a-f0-9]{40})")
m = p.search(ray_wheels)
if m is not None:
custom_commit_str = m.group(1)
ray_wheels_str = f" ({ray_wheels}) " if ray_wheels else ""
logging.info(f"Creating step for {test_file}/{test_name}{ray_wheels_str}")
cmd = (
f"./release/run_e2e.sh "
f'--ray-repo "{ray_repo}" '
f'--ray-branch "{ray_branch}" '
f'--ray-version "{ray_version}" '
f'--ray-wheels "{ray_wheels}" '
f'--ray-test-repo "{ray_test_repo}" '
f'--ray-test-branch "{ray_test_branch}" '
)
args = (
f"--category {ray_branch} "
f"--test-config {test_file} "
f"--test-name {test_name} "
f"--keep-results-dir"
)
if test_name.smoke_test:
logging.info("This test will run as a smoke test.")
args += " --smoke-test"
step_conf = copy.deepcopy(DEFAULT_STEP_TEMPLATE)
if test_name.retry:
logging.info(f"This test will be retried up to " f"{test_name.retry} times.")
step_conf["retry"] = {
"automatic": [{"exit_status": "*", "limit": test_name.retry}]
}
else:
# Default retry logic
# Warning: Exit codes are currently not correctly propagated to
# buildkite! Thus, actual retry logic is currently implemented in
# the run_e2e.sh script!
step_conf["retry"] = {
"automatic": [
{"exit_status": 7, "limit": 2}, # Prepare timeout
{"exit_status": 9, "limit": 2}, # Session timeout
{"exit_status": 10, "limit": 2}, # Prepare error
],
}
step_conf["command"] = cmd + args
step_conf["label"] = (
f"{test_name} "
f"({custom_commit_str if ray_wheels_str else ray_branch}) - "
f"{ray_test_branch}/{ray_test_repo}"
)
return step_conf
def build_pipeline(steps):
all_steps = []
RAY_BRANCH = os.environ.get("RAY_BRANCH", "master")
RAY_REPO = os.environ.get("RAY_REPO", "https://github.com/ray-project/ray.git")
RAY_VERSION = os.environ.get("RAY_VERSION", "")
RAY_WHEELS = os.environ.get("RAY_WHEELS", "")
RAY_TEST_BRANCH = os.environ.get("RAY_TEST_BRANCH", RAY_BRANCH)
RAY_TEST_REPO = os.environ.get("RAY_TEST_REPO", RAY_REPO)
FILTER_FILE = os.environ.get("FILTER_FILE", "")
FILTER_TEST = os.environ.get("FILTER_TEST", "")
ray_wheels_list = [""]
if RAY_WHEELS:
ray_wheels_list = RAY_WHEELS.split("\n")
if len(ray_wheels_list) > 1:
logging.info(
f"This will run a bisec on the following URLs/commits: "
f"{ray_wheels_list}"
)
logging.info(
f"Building pipeline \n"
f"Ray repo/branch to test:\n"
f" RAY_REPO = {RAY_REPO}\n"
f" RAY_BRANCH = {RAY_BRANCH}\n\n"
f" RAY_VERSION = {RAY_VERSION}\n\n"
f" RAY_WHEELS = {RAY_WHEELS}\n\n"
f"Ray repo/branch containing the test configurations and scripts:"
f" RAY_TEST_REPO = {RAY_TEST_REPO}\n"
f" RAY_TEST_BRANCH = {RAY_TEST_BRANCH}\n\n"
f"Filtering for these tests:\n"
f" FILTER_FILE = {FILTER_FILE}\n"
f" FILTER_TEST = {FILTER_TEST}\n\n"
)
for test_file, test_names in steps.items():
if FILTER_FILE and FILTER_FILE not in test_file:
continue
test_base = os.path.basename(test_file)
for test_name in test_names:
if FILTER_TEST and FILTER_TEST not in test_name:
continue
if not isinstance(test_name, ReleaseTest):
test_name = ReleaseTest(name=test_name)
logging.info(f"Adding test: {test_base}/{test_name}")
for ray_wheels in ray_wheels_list:
step_conf = create_test_step(
ray_repo=RAY_REPO,
ray_branch=RAY_BRANCH,
ray_version=RAY_VERSION,
ray_wheels=ray_wheels,
ray_test_repo=RAY_TEST_REPO,
ray_test_branch=RAY_TEST_BRANCH,
test_file=test_file,
test_name=test_name,
)
all_steps.append(step_conf)
return all_steps
def alert_pipeline(stats: bool = False):
step_conf = copy.deepcopy(DEFAULT_STEP_TEMPLATE)
cmd = "python release/alert.py"
if stats:
cmd += " --stats"
step_conf["commands"] = [
"pip install -q -r release/requirements.txt",
"pip install -U boto3 botocore",
cmd,
]
step_conf["label"] = f"Send periodic alert (stats_only = {stats})"
return [step_conf]
if __name__ == "__main__":
alert = os.environ.get("RELEASE_ALERT", "0")
ask_for_config = not bool(int(os.environ.get("AUTOMATIC", "0")))
if alert in ["1", "stats"]:
steps = alert_pipeline(alert == "stats")
elif ask_for_config:
steps = ask_configuration()
else:
TEST_SUITE = os.environ.get("RELEASE_TEST_SUITE", "nightly")
PIPELINE_SPEC = SUITES[TEST_SUITE]
steps = build_pipeline(PIPELINE_SPEC)
yaml.dump({"steps": steps}, sys.stdout)