mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* init for exposing external interface * revisions * http server * small * simplify * ui * fixes * test * nit * nit * merge * untested * nits * nit * init tests * tests * more tests * nit * fix hyperband * cleanup * nits * good stuff * cleanup * comments and need to test * nit * notebook * testing * test and expose server * server_tests * docs * periods * fix tests * committing test * fi
542 lines
17 KiB
Python
542 lines
17 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import time
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib import _register_all
|
|
|
|
from ray.tune import Trainable, TuneError
|
|
from ray.tune import register_env, register_trainable, run_experiments
|
|
from ray.tune.registry import _default_registry, TRAINABLE_CLASS
|
|
from ray.tune.result import DEFAULT_RESULTS_DIR
|
|
from ray.tune.trial import Trial, Resources
|
|
from ray.tune.trial_runner import TrialRunner
|
|
from ray.tune.variant_generator import generate_trials, grid_search, \
|
|
RecursiveDependencyError
|
|
|
|
|
|
class TrainableFunctionApiTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
ray.worker.cleanup()
|
|
_register_all() # re-register the evicted objects
|
|
|
|
def testRegisterEnv(self):
|
|
register_env("foo", lambda: None)
|
|
self.assertRaises(TypeError, lambda: register_env("foo", 2))
|
|
|
|
def testRegisterTrainable(self):
|
|
def train(config, reporter):
|
|
pass
|
|
|
|
class A(object):
|
|
pass
|
|
|
|
class B(Trainable):
|
|
pass
|
|
|
|
register_trainable("foo", train)
|
|
register_trainable("foo", B)
|
|
self.assertRaises(TypeError, lambda: register_trainable("foo", B()))
|
|
self.assertRaises(TypeError, lambda: register_trainable("foo", A))
|
|
|
|
def testRewriteEnv(self):
|
|
def train(config, reporter):
|
|
reporter(timesteps_total=1)
|
|
register_trainable("f1", train)
|
|
|
|
[trial] = run_experiments({"foo": {
|
|
"run": "f1",
|
|
"env": "CartPole-v0",
|
|
}})
|
|
self.assertEqual(trial.config["env"], "CartPole-v0")
|
|
|
|
def testConfigPurity(self):
|
|
def train(config, reporter):
|
|
assert config == {"a": "b"}, config
|
|
reporter(timesteps_total=1)
|
|
register_trainable("f1", train)
|
|
run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {"a": "b"},
|
|
}})
|
|
|
|
def testLogdir(self):
|
|
def train(config, reporter):
|
|
assert "/tmp/logdir/foo" in os.getcwd(), os.getcwd()
|
|
reporter(timesteps_total=1)
|
|
register_trainable("f1", train)
|
|
run_experiments({"foo": {
|
|
"run": "f1",
|
|
"local_dir": "/tmp/logdir",
|
|
"config": {"a": "b"},
|
|
}})
|
|
|
|
def testBadParams(self):
|
|
def f():
|
|
run_experiments({"foo": {}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadParams2(self):
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"bah": "this param is not allowed",
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadParams3(self):
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": grid_search("invalid grid search"),
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadParams4(self):
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": "asdf",
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadParams5(self):
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": "PPO",
|
|
"stop": {"asdf": 1}
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadParams6(self):
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": "PPO",
|
|
"resources": {"asdf": 1}
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testBadReturn(self):
|
|
def train(config, reporter):
|
|
reporter()
|
|
register_trainable("f1", train)
|
|
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {
|
|
"script_min_iter_time_s": 0,
|
|
},
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testEarlyReturn(self):
|
|
def train(config, reporter):
|
|
reporter(timesteps_total=100, done=True)
|
|
time.sleep(99999)
|
|
register_trainable("f1", train)
|
|
[trial] = run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {
|
|
"script_min_iter_time_s": 0,
|
|
},
|
|
}})
|
|
self.assertEqual(trial.status, Trial.TERMINATED)
|
|
self.assertEqual(trial.last_result.timesteps_total, 100)
|
|
|
|
def testAbruptReturn(self):
|
|
def train(config, reporter):
|
|
reporter(timesteps_total=100)
|
|
register_trainable("f1", train)
|
|
[trial] = run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {
|
|
"script_min_iter_time_s": 0,
|
|
},
|
|
}})
|
|
self.assertEqual(trial.status, Trial.TERMINATED)
|
|
self.assertEqual(trial.last_result.timesteps_total, 100)
|
|
|
|
def testErrorReturn(self):
|
|
def train(config, reporter):
|
|
raise Exception("uh oh")
|
|
register_trainable("f1", train)
|
|
|
|
def f():
|
|
run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {
|
|
"script_min_iter_time_s": 0,
|
|
},
|
|
}})
|
|
self.assertRaises(TuneError, f)
|
|
|
|
def testSuccess(self):
|
|
def train(config, reporter):
|
|
for i in range(100):
|
|
reporter(timesteps_total=i)
|
|
register_trainable("f1", train)
|
|
[trial] = run_experiments({"foo": {
|
|
"run": "f1",
|
|
"config": {
|
|
"script_min_iter_time_s": 0,
|
|
},
|
|
}})
|
|
self.assertEqual(trial.status, Trial.TERMINATED)
|
|
self.assertEqual(trial.last_result.timesteps_total, 99)
|
|
|
|
|
|
class VariantGeneratorTest(unittest.TestCase):
|
|
def testParseToTrials(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"repeat": 2,
|
|
"config": {
|
|
"env": "Pong-v0",
|
|
"foo": "bar"
|
|
},
|
|
}, "tune-pong")
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 2)
|
|
self.assertEqual(str(trials[0]), "PPO_Pong-v0_0")
|
|
self.assertEqual(trials[0].config, {"foo": "bar", "env": "Pong-v0"})
|
|
self.assertEqual(trials[0].trainable_name, "PPO")
|
|
self.assertEqual(trials[0].experiment_tag, "0")
|
|
self.assertEqual(
|
|
trials[0].local_dir,
|
|
os.path.join(DEFAULT_RESULTS_DIR, "tune-pong"))
|
|
self.assertEqual(trials[1].experiment_tag, "1")
|
|
|
|
def testEval(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"foo": {
|
|
"eval": "2 + 2"
|
|
},
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 1)
|
|
self.assertEqual(trials[0].config, {"foo": 4})
|
|
self.assertEqual(trials[0].experiment_tag, "0_foo=4")
|
|
|
|
def testGridSearch(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"bar": {
|
|
"grid_search": [True, False]
|
|
},
|
|
"foo": {
|
|
"grid_search": [1, 2, 3]
|
|
},
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 6)
|
|
self.assertEqual(trials[0].config, {"bar": True, "foo": 1})
|
|
self.assertEqual(trials[0].experiment_tag, "0_bar=True,foo=1")
|
|
self.assertEqual(trials[1].config, {"bar": False, "foo": 1})
|
|
self.assertEqual(trials[1].experiment_tag, "1_bar=False,foo=1")
|
|
self.assertEqual(trials[2].config, {"bar": True, "foo": 2})
|
|
self.assertEqual(trials[3].config, {"bar": False, "foo": 2})
|
|
self.assertEqual(trials[4].config, {"bar": True, "foo": 3})
|
|
self.assertEqual(trials[5].config, {"bar": False, "foo": 3})
|
|
|
|
def testGridSearchAndEval(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"qux": lambda spec: 2 + 2,
|
|
"bar": grid_search([True, False]),
|
|
"foo": grid_search([1, 2, 3]),
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 6)
|
|
self.assertEqual(trials[0].config, {"bar": True, "foo": 1, "qux": 4})
|
|
self.assertEqual(trials[0].experiment_tag, "0_bar=True,foo=1,qux=4")
|
|
|
|
def testConditionResolution(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"x": 1,
|
|
"y": lambda spec: spec.config.x + 1,
|
|
"z": lambda spec: spec.config.y + 1,
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 1)
|
|
self.assertEqual(trials[0].config, {"x": 1, "y": 2, "z": 3})
|
|
|
|
def testDependentLambda(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"x": grid_search([1, 2]),
|
|
"y": lambda spec: spec.config.x * 100,
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 2)
|
|
self.assertEqual(trials[0].config, {"x": 1, "y": 100})
|
|
self.assertEqual(trials[1].config, {"x": 2, "y": 200})
|
|
|
|
def testDependentGridSearch(self):
|
|
trials = generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"x": grid_search([
|
|
lambda spec: spec.config.y * 100,
|
|
lambda spec: spec.config.y * 200
|
|
]),
|
|
"y": lambda spec: 1,
|
|
},
|
|
})
|
|
trials = list(trials)
|
|
self.assertEqual(len(trials), 2)
|
|
self.assertEqual(trials[0].config, {"x": 100, "y": 1})
|
|
self.assertEqual(trials[1].config, {"x": 200, "y": 1})
|
|
|
|
def testRecursiveDep(self):
|
|
try:
|
|
list(generate_trials({
|
|
"run": "PPO",
|
|
"config": {
|
|
"foo": lambda spec: spec.config.foo,
|
|
},
|
|
}))
|
|
except RecursiveDependencyError as e:
|
|
assert "`foo` recursively depends on" in str(e), e
|
|
else:
|
|
assert False
|
|
|
|
|
|
class TrialRunnerTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
ray.worker.cleanup()
|
|
_register_all() # re-register the evicted objects
|
|
|
|
def testTrialStatus(self):
|
|
ray.init()
|
|
trial = Trial("__fake")
|
|
self.assertEqual(trial.status, Trial.PENDING)
|
|
trial.start()
|
|
self.assertEqual(trial.status, Trial.RUNNING)
|
|
trial.stop()
|
|
self.assertEqual(trial.status, Trial.TERMINATED)
|
|
trial.stop(error=True)
|
|
self.assertEqual(trial.status, Trial.ERROR)
|
|
|
|
def testTrialErrorOnStart(self):
|
|
ray.init()
|
|
_default_registry.register(TRAINABLE_CLASS, "asdf", None)
|
|
trial = Trial("asdf")
|
|
try:
|
|
trial.start()
|
|
except Exception as e:
|
|
self.assertIn("a class", str(e))
|
|
|
|
def testResourceScheduler(self):
|
|
ray.init(num_cpus=4, num_gpus=1)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 1},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
trials = [
|
|
Trial("__fake", **kwargs),
|
|
Trial("__fake", **kwargs)]
|
|
for t in trials:
|
|
runner.add_trial(t)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.TERMINATED)
|
|
|
|
def testMultiStepRun(self):
|
|
ray.init(num_cpus=4, num_gpus=2)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 5},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
trials = [
|
|
Trial("__fake", **kwargs),
|
|
Trial("__fake", **kwargs)]
|
|
for t in trials:
|
|
runner.add_trial(t)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
|
|
def testErrorHandling(self):
|
|
ray.init(num_cpus=4, num_gpus=2)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 1},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
_default_registry.register(TRAINABLE_CLASS, "asdf", None)
|
|
trials = [
|
|
Trial("asdf", **kwargs),
|
|
Trial("__fake", **kwargs)]
|
|
for t in trials:
|
|
runner.add_trial(t)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.ERROR)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.ERROR)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
|
|
def testCheckpointing(self):
|
|
ray.init(num_cpus=1, num_gpus=1)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 1},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
runner.add_trial(Trial("__fake", **kwargs))
|
|
trials = runner.get_trials()
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
|
|
|
|
path = trials[0].checkpoint()
|
|
kwargs["restore_path"] = path
|
|
|
|
runner.add_trial(Trial("__fake", **kwargs))
|
|
trials = runner.get_trials()
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
self.assertEqual(ray.get(trials[1].runner.get_info.remote()), 1)
|
|
self.addCleanup(os.remove, path)
|
|
|
|
def testResultDone(self):
|
|
"""Tests that last_result is marked `done` after trial is complete."""
|
|
ray.init(num_cpus=1, num_gpus=1)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 2},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
runner.add_trial(Trial("__fake", **kwargs))
|
|
trials = runner.get_trials()
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
runner.step()
|
|
self.assertNotEqual(trials[0].last_result.done, True)
|
|
runner.step()
|
|
self.assertEqual(trials[0].last_result.done, True)
|
|
|
|
def testPauseThenResume(self):
|
|
ray.init(num_cpus=1, num_gpus=1)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 2},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
runner.add_trial(Trial("__fake", **kwargs))
|
|
trials = runner.get_trials()
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(ray.get(trials[0].runner.get_info.remote()), None)
|
|
|
|
self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
|
|
|
|
trials[0].pause()
|
|
self.assertEqual(trials[0].status, Trial.PAUSED)
|
|
|
|
trials[0].resume()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(ray.get(trials[0].runner.get_info.remote()), 1)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
|
|
def testStopTrial(self):
|
|
ray.init(num_cpus=4, num_gpus=2)
|
|
runner = TrialRunner()
|
|
kwargs = {
|
|
"stopping_criterion": {"training_iteration": 5},
|
|
"resources": Resources(cpu=1, gpu=1),
|
|
}
|
|
trials = [
|
|
Trial("__fake", **kwargs),
|
|
Trial("__fake", **kwargs),
|
|
Trial("__fake", **kwargs),
|
|
Trial("__fake", **kwargs)]
|
|
for t in trials:
|
|
runner.add_trial(t)
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.RUNNING)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
# Stop trial while running
|
|
runner.stop_trial(trials[0])
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.PENDING)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
self.assertEqual(trials[-1].status, Trial.PENDING)
|
|
|
|
# Stop trial while pending
|
|
runner.stop_trial(trials[-1])
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
self.assertEqual(trials[-1].status, Trial.TERMINATED)
|
|
|
|
runner.step()
|
|
self.assertEqual(trials[0].status, Trial.TERMINATED)
|
|
self.assertEqual(trials[1].status, Trial.RUNNING)
|
|
self.assertEqual(trials[2].status, Trial.RUNNING)
|
|
self.assertEqual(trials[-1].status, Trial.TERMINATED)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2)
|