ray/rllib/agents/pg/pg_policy.py

37 lines
1.2 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import ray
from ray.rllib.evaluation.postprocessing import compute_advantages, \
Postprocessing
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
# The basic policy gradients loss
def policy_gradient_loss(policy, model, dist_class, train_batch):
logits, _ = model.from_batch(train_batch)
action_dist = dist_class(logits, model)
return -tf.reduce_mean(
action_dist.logp(train_batch[SampleBatch.ACTIONS]) *
train_batch[Postprocessing.ADVANTAGES])
# This adds the "advantages" column to the sampletrain_batch.
def postprocess_advantages(policy,
sample_batch,
other_agent_batches=None,
episode=None):
return compute_advantages(
sample_batch, 0.0, policy.config["gamma"], use_gae=False)
PGTFPolicy = build_tf_policy(
name="PGTFPolicy",
get_default_config=lambda: ray.rllib.agents.pg.pg.DEFAULT_CONFIG,
postprocess_fn=postprocess_advantages,
loss_fn=policy_gradient_loss)