ray/release/rllib_tests/app_config.yaml

26 lines
1,003 B
YAML
Executable file

base_image: "anyscale/ray-ml:pinned-nightly-py37-gpu"
env_vars: {}
debian_packages:
- unzip
- zip
python:
# These dependencies should be handled by requirements_rllib.txt and
# requirements_ml_docker.txt
pip_packages: []
conda_packages: []
post_build_cmds:
# Create a couple of soft links so tf 2.4.3 works with cuda 11.2.
# TODO(jungong): remove these once product ray-ml docker gets upgraded to use tf 2.5.0.
- sudo ln -s /usr/local/cuda /usr/local/nvidia
- sudo ln -s /usr/local/cuda/lib64/libcusolver.so.11 /usr/local/cuda/lib64/libcusolver.so.10
- pip install tensorflow==2.5.0
# END: TO-DO
- pip uninstall -y ray || true
- pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }}
- {{ env["RAY_WHEELS_SANITY_CHECK"] | default("echo No Ray wheels sanity check") }}
# Clone the rl-experiments repo for offline-RL files.
- git clone https://github.com/ray-project/rl-experiments.git
- cp rl-experiments/halfcheetah-sac/2021-09-06/halfcheetah_expert_sac.zip ~/.