ray/rllib/utils/exploration/tests/test_curiosity.py

271 lines
9.7 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from collections import deque
import gym
import gym_minigrid
import numpy as np
import sys
import unittest
import ray
from ray import tune
from ray.rllib.agents.callbacks import DefaultCallbacks
import ray.rllib.agents.ppo as ppo
from ray.rllib.utils.test_utils import check_learning_achieved, \
framework_iterator
from ray.rllib.utils.numpy import one_hot
from ray.tune import register_env
class MyCallBack(DefaultCallbacks):
def __init__(self):
super().__init__()
self.deltas = []
def on_postprocess_trajectory(self, *, worker, episode, agent_id,
policy_id, policies, postprocessed_batch,
original_batches, **kwargs):
pos = np.argmax(postprocessed_batch["obs"], -1)
x, y = pos % 10, pos // 10
self.deltas.extend((x**2 + y**2)**0.5)
def on_sample_end(self, *, worker, samples, **kwargs):
print("mean. distance from origin={}".format(np.mean(self.deltas)))
self.deltas = []
class OneHotWrapper(gym.core.ObservationWrapper):
def __init__(self, env, vector_index, framestack):
super().__init__(env)
self.framestack = framestack
# 49=7x7 field of vision; 11=object types; 6=colors; 3=state types.
# +4: Direction.
self.single_frame_dim = 49 * (11 + 6 + 3) + 4
self.init_x = None
self.init_y = None
self.x_positions = []
self.y_positions = []
self.x_y_delta_buffer = deque(maxlen=100)
self.vector_index = vector_index
self.frame_buffer = deque(maxlen=self.framestack)
for _ in range(self.framestack):
self.frame_buffer.append(np.zeros((self.single_frame_dim, )))
self.observation_space = gym.spaces.Box(
0.0,
1.0,
shape=(self.single_frame_dim * self.framestack, ),
dtype=np.float32)
def observation(self, obs):
# Debug output: max-x/y positions to watch exploration progress.
if self.step_count == 0:
for _ in range(self.framestack):
self.frame_buffer.append(np.zeros((self.single_frame_dim, )))
if self.vector_index == 0:
if self.x_positions:
max_diff = max(
np.sqrt((np.array(self.x_positions) - self.init_x)**2 +
(np.array(self.y_positions) - self.init_y)**2))
self.x_y_delta_buffer.append(max_diff)
print("100-average dist travelled={}".format(
np.mean(self.x_y_delta_buffer)))
self.x_positions = []
self.y_positions = []
self.init_x = self.agent_pos[0]
self.init_y = self.agent_pos[1]
# Are we carrying the key?
# if self.carrying is not None:
# print("Carrying KEY!!")
self.x_positions.append(self.agent_pos[0])
self.y_positions.append(self.agent_pos[1])
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
objects = one_hot(obs[:, :, 0], depth=11)
colors = one_hot(obs[:, :, 1], depth=6)
states = one_hot(obs[:, :, 2], depth=3)
# Is the door we see open?
# for x in range(7):
# for y in range(7):
# if objects[x, y, 4] == 1.0 and states[x, y, 0] == 1.0:
# print("Door OPEN!!")
all_ = np.concatenate([objects, colors, states], -1)
all_flat = np.reshape(all_, (-1, ))
direction = one_hot(
np.array(self.agent_dir), depth=4).astype(np.float32)
single_frame = np.concatenate([all_flat, direction])
self.frame_buffer.append(single_frame)
return np.concatenate(self.frame_buffer)
def env_maker(config):
name = config.get("name", "MiniGrid-Empty-5x5-v0")
framestack = config.get("framestack", 4)
env = gym.make(name)
# Only use image portion of observation (discard goal and direction).
env = gym_minigrid.wrappers.ImgObsWrapper(env)
env = OneHotWrapper(
env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack)
return env
register_env("mini-grid", env_maker)
CONV_FILTERS = [[16, [11, 11], 3], [32, [9, 9], 3], [64, [5, 5], 3]]
class TestCuriosity(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=3)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_curiosity_on_large_frozen_lake(self):
config = ppo.DEFAULT_CONFIG.copy()
# A very large frozen-lake that's hard for a random policy to solve
# due to 0.0 feedback.
config["env"] = "FrozenLake-v0"
config["env_config"] = {
"desc": [
"SFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFF",
"FFFFFFFFFG",
],
"is_slippery": False
}
# Print out observations to see how far we already get inside the Env.
config["callbacks"] = MyCallBack
# Limit horizon to make it really hard for non-curious agent to reach
# the goal state.
config["horizon"] = 23
# Local only.
config["num_workers"] = 0
config["lr"] = 0.001
num_iterations = 10
for _ in framework_iterator(config, frameworks="torch"):
# W/ Curiosity. Expect to learn something.
config["exploration_config"] = {
"type": "Curiosity",
"eta": 0.2,
"lr": 0.001,
"feature_dim": 128,
"feature_net_config": {
"fcnet_hiddens": [],
"fcnet_activation": "relu",
},
"sub_exploration": {
"type": "StochasticSampling",
}
}
trainer = ppo.PPOTrainer(config=config)
learnt = False
for i in range(num_iterations):
result = trainer.train()
print(result)
if result["episode_reward_max"] > 0.0:
print("Reached goal after {} iters!".format(i))
learnt = True
break
trainer.stop()
self.assertTrue(learnt)
# W/o Curiosity. Expect to learn nothing.
config["exploration_config"] = {
"type": "StochasticSampling",
}
trainer = ppo.PPOTrainer(config=config)
rewards_wo = 0.0
for _ in range(num_iterations):
result = trainer.train()
rewards_wo += result["episode_reward_mean"]
print(result)
trainer.stop()
self.assertTrue(rewards_wo == 0.0)
def test_curiosity_on_partially_observable_domain(self):
config = ppo.DEFAULT_CONFIG.copy()
config["env"] = "mini-grid"
config["env_config"] = {
# Also works with:
# - MiniGrid-MultiRoom-N4-S5-v0
# - MiniGrid-MultiRoom-N2-S4-v0
"name": "MiniGrid-Empty-8x8-v0",
"framestack": 1, # seems to work even w/o framestacking
}
config["horizon"] = 15 # Make it impossible to reach goal by chance.
config["num_envs_per_worker"] = 4
config["model"]["fcnet_hiddens"] = [256, 256]
config["model"]["fcnet_activation"] = "relu"
config["num_sgd_iter"] = 8
config["num_workers"] = 0
config["exploration_config"] = {
"type": "Curiosity",
# For the feature NN, use a non-LSTM fcnet (same as the one
# in the policy model).
"eta": 0.1,
"lr": 0.0003, # 0.0003 or 0.0005 seem to work fine as well.
"feature_dim": 64,
# No actual feature net: map directly from observations to feature
# vector (linearly).
"feature_net_config": {
"fcnet_hiddens": [],
"fcnet_activation": "relu",
},
"sub_exploration": {
"type": "StochasticSampling",
}
}
min_reward = 0.001
stop = {
"training_iteration": 25,
"episode_reward_mean": min_reward,
}
for _ in framework_iterator(config, frameworks="torch"):
# To replay:
# trainer = ppo.PPOTrainer(config=config)
# trainer.restore("[checkpoint file]")
# env = env_maker(config["env_config"])
# s = env.reset()
# for _ in range(10000):
# s, r, d, _ = env.step(trainer.compute_action(s))
# if d:
# s = env.reset()
# env.render()
results = tune.run("PPO", config=config, stop=stop, verbose=1)
check_learning_achieved(results, min_reward)
iters = results.trials[0].last_result["training_iteration"]
print("Reached in {} iterations.".format(iters))
# config_wo = config.copy()
# config_wo["exploration_config"] = {"type": "StochasticSampling"}
# stop_wo = stop.copy()
# stop_wo["training_iteration"] = iters
# results = tune.run(
# "PPO", config=config_wo, stop=stop_wo, verbose=1)
# try:
# check_learning_achieved(results, min_reward)
# except ValueError:
# print("Did not learn w/o curiosity (expected).")
# else:
# raise ValueError("Learnt w/o curiosity (not expected)!")
if __name__ == "__main__":
import pytest
sys.exit(pytest.main(["-v", __file__]))