mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
142 lines
5.5 KiB
Python
142 lines
5.5 KiB
Python
"""
|
||
Recurrent Experience Replay in Distributed Reinforcement Learning (R2D2)
|
||
========================================================================
|
||
|
||
[1] Recurrent Experience Replay in Distributed Reinforcement Learning -
|
||
S Kapturowski, G Ostrovski, J Quan, R Munos, W Dabney - 2019, DeepMind
|
||
|
||
This file defines the distributed Trainer class for the R2D2
|
||
algorithm. See `r2d2_[tf|torch]_policy.py` for the definition of the policies.
|
||
|
||
Detailed documentation:
|
||
https://docs.ray.io/en/master/rllib-algorithms.html#recurrent-replay-distributed-dqn-r2d2
|
||
""" # noqa: E501
|
||
|
||
import logging
|
||
from typing import List, Optional, Type
|
||
|
||
from ray.rllib.agents import dqn
|
||
from ray.rllib.agents.dqn.r2d2_tf_policy import R2D2TFPolicy
|
||
from ray.rllib.agents.dqn.r2d2_torch_policy import R2D2TorchPolicy
|
||
from ray.rllib.policy.policy import Policy
|
||
from ray.rllib.utils.typing import TrainerConfigDict
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
# yapf: disable
|
||
# __sphinx_doc_begin__
|
||
DEFAULT_CONFIG = dqn.DQNTrainer.merge_trainer_configs(
|
||
dqn.DEFAULT_CONFIG, # See keys in impala.py, which are also supported.
|
||
{
|
||
# Learning rate for adam optimizer.
|
||
"lr": 1e-4,
|
||
# Discount factor.
|
||
"gamma": 0.997,
|
||
# Train batch size (in number of single timesteps).
|
||
"train_batch_size": 64 * 20,
|
||
# Adam epsilon hyper parameter
|
||
"adam_epsilon": 1e-3,
|
||
# Run in parallel by default.
|
||
"num_workers": 2,
|
||
# Batch mode must be complete_episodes.
|
||
"batch_mode": "complete_episodes",
|
||
|
||
# If True, assume a zero-initialized state input (no matter where in
|
||
# the episode the sequence is located).
|
||
# If False, store the initial states along with each SampleBatch, use
|
||
# it (as initial state when running through the network for training),
|
||
# and update that initial state during training (from the internal
|
||
# state outputs of the immediately preceding sequence).
|
||
"zero_init_states": True,
|
||
# If > 0, use the `burn_in` first steps of each replay-sampled sequence
|
||
# (starting either from all 0.0-values if `zero_init_state=True` or
|
||
# from the already stored values) to calculate an even more accurate
|
||
# initial states for the actual sequence (starting after this burn-in
|
||
# window). In the burn-in case, the actual length of the sequence
|
||
# used for loss calculation is `n - burn_in` time steps
|
||
# (n=LSTM’s/attention net’s max_seq_len).
|
||
"burn_in": 0,
|
||
|
||
# Whether to use the h-function from the paper [1] to scale target
|
||
# values in the R2D2-loss function:
|
||
# h(x) = sign(x)(|x| + 1 − 1) + εx
|
||
"use_h_function": True,
|
||
# The epsilon parameter from the R2D2 loss function (only used
|
||
# if `use_h_function`=True.
|
||
"h_function_epsilon": 1e-3,
|
||
|
||
# === Hyperparameters from the paper [1] ===
|
||
# Size of the replay buffer (in sequences, not timesteps).
|
||
"buffer_size": 100000,
|
||
# If True prioritized replay buffer will be used.
|
||
"prioritized_replay": False,
|
||
# Set automatically: The number of contiguous environment steps to
|
||
# replay at once. Will be calculated via
|
||
# model->max_seq_len + burn_in.
|
||
# Do not set this to any valid value!
|
||
"replay_sequence_length": -1,
|
||
|
||
# Update the target network every `target_network_update_freq` steps.
|
||
"target_network_update_freq": 2500,
|
||
},
|
||
_allow_unknown_configs=True,
|
||
)
|
||
# __sphinx_doc_end__
|
||
# yapf: enable
|
||
|
||
|
||
def validate_config(config: TrainerConfigDict) -> None:
|
||
"""Checks and updates the config based on settings.
|
||
|
||
Rewrites rollout_fragment_length to take into account burn-in and
|
||
max_seq_len truncation.
|
||
"""
|
||
if config["replay_sequence_length"] != -1:
|
||
raise ValueError(
|
||
"`replay_sequence_length` is calculated automatically to be "
|
||
"model->max_seq_len + burn_in!")
|
||
# Add the `burn_in` to the Model's max_seq_len.
|
||
# Set the replay sequence length to the max_seq_len of the model.
|
||
config["replay_sequence_length"] = \
|
||
config["burn_in"] + config["model"]["max_seq_len"]
|
||
|
||
if config.get("batch_mode") != "complete_episodes":
|
||
raise ValueError("`batch_mode` must be 'complete_episodes'!")
|
||
|
||
|
||
def calculate_rr_weights(config: TrainerConfigDict) -> List[float]:
|
||
"""Calculate the round robin weights for the rollout and train steps"""
|
||
if not config["training_intensity"]:
|
||
return [1, 1]
|
||
# e.g., 32 / 4 -> native ratio of 8.0
|
||
native_ratio = (
|
||
config["train_batch_size"] / config["rollout_fragment_length"])
|
||
# Training intensity is specified in terms of
|
||
# (steps_replayed / steps_sampled), so adjust for the native ratio.
|
||
weights = [1, config["training_intensity"] / native_ratio]
|
||
return weights
|
||
|
||
|
||
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
|
||
"""Policy class picker function. Class is chosen based on DL-framework.
|
||
|
||
Args:
|
||
config (TrainerConfigDict): The trainer's configuration dict.
|
||
|
||
Returns:
|
||
Optional[Type[Policy]]: The Policy class to use with R2D2Trainer.
|
||
If None, use `default_policy` provided in build_trainer().
|
||
"""
|
||
if config["framework"] == "torch":
|
||
return R2D2TorchPolicy
|
||
|
||
|
||
# Build an R2D2 trainer, which uses the framework specific Policy
|
||
# determined in `get_policy_class()` above.
|
||
R2D2Trainer = dqn.DQNTrainer.with_updates(
|
||
name="R2D2",
|
||
default_policy=R2D2TFPolicy,
|
||
get_policy_class=get_policy_class,
|
||
default_config=DEFAULT_CONFIG,
|
||
validate_config=validate_config,
|
||
)
|