ray/rllib/algorithms/marwil/marwil.py
2022-05-17 13:43:49 +02:00

165 lines
6 KiB
Python

from typing import Type
from ray.rllib.agents.trainer import Trainer, with_common_config
from ray.rllib.algorithms.marwil.marwil_tf_policy import MARWILTFPolicy
from ray.rllib.utils.replay_buffers.utils import validate_buffer_config
from ray.rllib.execution.rollout_ops import (
synchronous_parallel_sample,
)
from ray.rllib.execution.train_ops import (
multi_gpu_train_one_step,
train_one_step,
)
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.annotations import override
from ray.rllib.utils.metrics import (
NUM_AGENT_STEPS_SAMPLED,
NUM_ENV_STEPS_SAMPLED,
WORKER_UPDATE_TIMER,
)
from ray.rllib.utils.typing import (
ResultDict,
TrainerConfigDict,
)
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
# fmt: off
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Input settings ===
# You should override this to point to an offline dataset
# (see trainer.py).
# The dataset may have an arbitrary number of timesteps
# (and even episodes) per line.
# However, each line must only contain consecutive timesteps in
# order for MARWIL to be able to calculate accumulated
# discounted returns. It is ok, though, to have multiple episodes in
# the same line.
"input": "sampler",
# Use importance sampling estimators for reward.
"input_evaluation": ["is", "wis"],
# === Postprocessing/accum., discounted return calculation ===
# If true, use the Generalized Advantage Estimator (GAE)
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf in
# case an input line ends with a non-terminal timestep.
"use_gae": True,
# Whether to calculate cumulative rewards. Must be True.
"postprocess_inputs": True,
# === Training ===
# Scaling of advantages in exponential terms.
# When beta is 0.0, MARWIL is reduced to behavior cloning
# (imitation learning); see bc.py algorithm in this same directory.
"beta": 1.0,
# Balancing value estimation loss and policy optimization loss.
"vf_coeff": 1.0,
# If specified, clip the global norm of gradients by this amount.
"grad_clip": None,
# Learning rate for Adam optimizer.
"lr": 1e-4,
# The squared moving avg. advantage norm (c^2) update rate
# (1e-8 in the paper).
"moving_average_sqd_adv_norm_update_rate": 1e-8,
# Starting value for the squared moving avg. advantage norm (c^2).
"moving_average_sqd_adv_norm_start": 100.0,
# Number of (independent) timesteps pushed through the loss
# each SGD round.
"train_batch_size": 2000,
"replay_buffer_config": {
"type": "MultiAgentPrioritizedReplayBuffer",
# Size of the replay buffer in (single and independent) timesteps.
# The buffer gets filled by reading from the input files line-by-line
# and adding all timesteps on one line at once. We then sample
# uniformly from the buffer (`train_batch_size` samples) for
# each training step.
"capacity": 10000,
# Specify prioritized replay by supplying a buffer type that supports
# prioritization
"prioritized_replay": DEPRECATED_VALUE,
# Number of steps to read before learning starts.
"learning_starts": 0,
"replay_sequence_length": 1
},
# A coeff to encourage higher action distribution entropy for exploration.
"bc_logstd_coeff": 0.0,
# === Parallelism ===
"num_workers": 0,
})
# __sphinx_doc_end__
# fmt: on
class MARWILTrainer(Trainer):
@classmethod
@override(Trainer)
def get_default_config(cls) -> TrainerConfigDict:
return DEFAULT_CONFIG
@override(Trainer)
def validate_config(self, config: TrainerConfigDict) -> None:
# Call super's validation method.
super().validate_config(config)
validate_buffer_config(config)
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for MARWIL!")
if config["postprocess_inputs"] is False and config["beta"] > 0.0:
raise ValueError(
"`postprocess_inputs` must be True for MARWIL (to "
"calculate accum., discounted returns)!"
)
@override(Trainer)
def get_default_policy_class(self, config: TrainerConfigDict) -> Type[Policy]:
if config["framework"] == "torch":
from ray.rllib.algorithms.marwil.marwil_torch_policy import (
MARWILTorchPolicy,
)
return MARWILTorchPolicy
else:
return MARWILTFPolicy
@override(Trainer)
def training_iteration(self) -> ResultDict:
# Collect SampleBatches from sample workers.
batch = synchronous_parallel_sample(worker_set=self.workers)
batch = batch.as_multi_agent()
self._counters[NUM_AGENT_STEPS_SAMPLED] += batch.agent_steps()
self._counters[NUM_ENV_STEPS_SAMPLED] += batch.env_steps()
# Add batch to replay buffer.
self.local_replay_buffer.add(batch)
# Pull batch from replay buffer and train on it.
train_batch = self.local_replay_buffer.sample(self.config["train_batch_size"])
# Train.
if self.config["simple_optimizer"]:
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
# TODO: Move training steps counter update outside of `train_one_step()` method.
# # Update train step counters.
# self._counters[NUM_ENV_STEPS_TRAINED] += train_batch.env_steps()
# self._counters[NUM_AGENT_STEPS_TRAINED] += train_batch.agent_steps()
global_vars = {
"timestep": self._counters[NUM_AGENT_STEPS_SAMPLED],
}
# Update weights - after learning on the local worker - on all remote
# workers.
if self.workers.remote_workers():
with self._timers[WORKER_UPDATE_TIMER]:
self.workers.sync_weights(global_vars=global_vars)
# Update global vars on local worker as well.
self.workers.local_worker().set_global_vars(global_vars)
return train_results