mirror of
https://github.com/vale981/ray
synced 2025-03-08 19:41:38 -05:00
46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.maml as maml
|
|
from ray.rllib.utils.test_utils import check_compute_single_action, \
|
|
framework_iterator
|
|
|
|
|
|
class TestMAML(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_maml_compilation(self):
|
|
"""Test whether a MAMLTrainer can be built with all frameworks."""
|
|
config = maml.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 1
|
|
config["horizon"] = 200
|
|
num_iterations = 1
|
|
|
|
# Test for tf framework (torch not implemented yet).
|
|
for fw in framework_iterator(config, frameworks=("tf", "torch")):
|
|
for env in [
|
|
"pendulum_mass.PendulumMassEnv",
|
|
"cartpole_mass.CartPoleMassEnv"
|
|
]:
|
|
if fw == "tf" and env.startswith("cartpole"):
|
|
continue
|
|
print("env={}".format(env))
|
|
env_ = "ray.rllib.examples.env.{}".format(env)
|
|
trainer = maml.MAMLTrainer(config=config, env=env_)
|
|
for i in range(num_iterations):
|
|
trainer.train()
|
|
check_compute_single_action(
|
|
trainer, include_prev_action_reward=True)
|
|
trainer.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|