mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
205 lines
6.8 KiB
Python
205 lines
6.8 KiB
Python
import gym
|
|
import random
|
|
|
|
from ray.rllib.env.multi_agent_env import MultiAgentEnv, make_multi_agent
|
|
from ray.rllib.examples.env.mock_env import MockEnv, MockEnv2
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
|
from ray.rllib.utils.deprecation import Deprecated
|
|
|
|
|
|
@Deprecated(
|
|
old="ray.rllib.examples.env.multi_agent.make_multiagent",
|
|
new="ray.rllib.env.multi_agent_env.make_multi_agent",
|
|
error=False)
|
|
def make_multiagent(env_name_or_creator):
|
|
return make_multi_agent(env_name_or_creator)
|
|
|
|
|
|
class BasicMultiAgent(MultiAgentEnv):
|
|
"""Env of N independent agents, each of which exits after 25 steps."""
|
|
|
|
def __init__(self, num):
|
|
self.agents = [MockEnv(25) for _ in range(num)]
|
|
self.dones = set()
|
|
self.observation_space = gym.spaces.Discrete(2)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
self.resetted = False
|
|
|
|
def reset(self):
|
|
self.resetted = True
|
|
self.dones = set()
|
|
return {i: a.reset() for i, a in enumerate(self.agents)}
|
|
|
|
def step(self, action_dict):
|
|
obs, rew, done, info = {}, {}, {}, {}
|
|
for i, action in action_dict.items():
|
|
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
|
|
if done[i]:
|
|
self.dones.add(i)
|
|
done["__all__"] = len(self.dones) == len(self.agents)
|
|
return obs, rew, done, info
|
|
|
|
|
|
class EarlyDoneMultiAgent(MultiAgentEnv):
|
|
"""Env for testing when the env terminates (after agent 0 does)."""
|
|
|
|
def __init__(self):
|
|
self.agents = [MockEnv(3), MockEnv(5)]
|
|
self.dones = set()
|
|
self.last_obs = {}
|
|
self.last_rew = {}
|
|
self.last_done = {}
|
|
self.last_info = {}
|
|
self.i = 0
|
|
self.observation_space = gym.spaces.Discrete(10)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.dones = set()
|
|
self.last_obs = {}
|
|
self.last_rew = {}
|
|
self.last_done = {}
|
|
self.last_info = {}
|
|
self.i = 0
|
|
for i, a in enumerate(self.agents):
|
|
self.last_obs[i] = a.reset()
|
|
self.last_rew[i] = None
|
|
self.last_done[i] = False
|
|
self.last_info[i] = {}
|
|
obs_dict = {self.i: self.last_obs[self.i]}
|
|
self.i = (self.i + 1) % len(self.agents)
|
|
return obs_dict
|
|
|
|
def step(self, action_dict):
|
|
assert len(self.dones) != len(self.agents)
|
|
for i, action in action_dict.items():
|
|
(self.last_obs[i], self.last_rew[i], self.last_done[i],
|
|
self.last_info[i]) = self.agents[i].step(action)
|
|
obs = {self.i: self.last_obs[self.i]}
|
|
rew = {self.i: self.last_rew[self.i]}
|
|
done = {self.i: self.last_done[self.i]}
|
|
info = {self.i: self.last_info[self.i]}
|
|
if done[self.i]:
|
|
rew[self.i] = 0
|
|
self.dones.add(self.i)
|
|
self.i = (self.i + 1) % len(self.agents)
|
|
done["__all__"] = len(self.dones) == len(self.agents) - 1
|
|
return obs, rew, done, info
|
|
|
|
|
|
class FlexAgentsMultiAgent(MultiAgentEnv):
|
|
"""Env of independent agents, each of which exits after n steps."""
|
|
|
|
def __init__(self):
|
|
self.agents = {}
|
|
self.agentID = 0
|
|
self.dones = set()
|
|
self.observation_space = gym.spaces.Discrete(2)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
self.resetted = False
|
|
|
|
def spawn(self):
|
|
# Spawn a new agent into the current episode.
|
|
agentID = self.agentID
|
|
self.agents[agentID] = MockEnv(25)
|
|
self.agentID += 1
|
|
return agentID
|
|
|
|
def reset(self):
|
|
self.agents = {}
|
|
self.spawn()
|
|
self.resetted = True
|
|
self.dones = set()
|
|
|
|
obs = {}
|
|
for i, a in self.agents.items():
|
|
obs[i] = a.reset()
|
|
|
|
return obs
|
|
|
|
def step(self, action_dict):
|
|
obs, rew, done, info = {}, {}, {}, {}
|
|
# Apply the actions.
|
|
for i, action in action_dict.items():
|
|
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
|
|
if done[i]:
|
|
self.dones.add(i)
|
|
|
|
# Sometimes, add a new agent to the episode.
|
|
if random.random() > 0.75:
|
|
i = self.spawn()
|
|
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
|
|
if done[i]:
|
|
self.dones.add(i)
|
|
|
|
# Sometimes, kill an existing agent.
|
|
if len(self.agents) > 1 and random.random() > 0.25:
|
|
keys = list(self.agents.keys())
|
|
key = random.choice(keys)
|
|
done[key] = True
|
|
del self.agents[key]
|
|
|
|
done["__all__"] = len(self.dones) == len(self.agents)
|
|
return obs, rew, done, info
|
|
|
|
|
|
class RoundRobinMultiAgent(MultiAgentEnv):
|
|
"""Env of N independent agents, each of which exits after 5 steps.
|
|
|
|
On each step() of the env, only one agent takes an action."""
|
|
|
|
def __init__(self, num, increment_obs=False):
|
|
if increment_obs:
|
|
# Observations are 0, 1, 2, 3... etc. as time advances
|
|
self.agents = [MockEnv2(5) for _ in range(num)]
|
|
else:
|
|
# Observations are all zeros
|
|
self.agents = [MockEnv(5) for _ in range(num)]
|
|
self.dones = set()
|
|
self.last_obs = {}
|
|
self.last_rew = {}
|
|
self.last_done = {}
|
|
self.last_info = {}
|
|
self.i = 0
|
|
self.num = num
|
|
self.observation_space = gym.spaces.Discrete(10)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.dones = set()
|
|
self.last_obs = {}
|
|
self.last_rew = {}
|
|
self.last_done = {}
|
|
self.last_info = {}
|
|
self.i = 0
|
|
for i, a in enumerate(self.agents):
|
|
self.last_obs[i] = a.reset()
|
|
self.last_rew[i] = None
|
|
self.last_done[i] = False
|
|
self.last_info[i] = {}
|
|
obs_dict = {self.i: self.last_obs[self.i]}
|
|
self.i = (self.i + 1) % self.num
|
|
return obs_dict
|
|
|
|
def step(self, action_dict):
|
|
assert len(self.dones) != len(self.agents)
|
|
for i, action in action_dict.items():
|
|
(self.last_obs[i], self.last_rew[i], self.last_done[i],
|
|
self.last_info[i]) = self.agents[i].step(action)
|
|
obs = {self.i: self.last_obs[self.i]}
|
|
rew = {self.i: self.last_rew[self.i]}
|
|
done = {self.i: self.last_done[self.i]}
|
|
info = {self.i: self.last_info[self.i]}
|
|
if done[self.i]:
|
|
rew[self.i] = 0
|
|
self.dones.add(self.i)
|
|
self.i = (self.i + 1) % self.num
|
|
done["__all__"] = len(self.dones) == len(self.agents)
|
|
return obs, rew, done, info
|
|
|
|
|
|
MultiAgentCartPole = make_multi_agent("CartPole-v0")
|
|
MultiAgentMountainCar = make_multi_agent("MountainCarContinuous-v0")
|
|
MultiAgentPendulum = make_multi_agent("Pendulum-v1")
|
|
MultiAgentStatelessCartPole = make_multi_agent(
|
|
lambda config: StatelessCartPole(config))
|