ray/rllib/algorithms/impala/impala_torch_policy.py

356 lines
13 KiB
Python

import gym
import logging
import numpy as np
from typing import Dict, List, Type, Union
import ray
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_mixins import (
EntropyCoeffSchedule,
LearningRateSchedule,
)
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.torch_utils import (
apply_grad_clipping,
explained_variance,
global_norm,
sequence_mask,
)
from ray.rllib.utils.typing import TensorType
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class VTraceLoss:
def __init__(
self,
actions,
actions_logp,
actions_entropy,
dones,
behaviour_action_logp,
behaviour_logits,
target_logits,
discount,
rewards,
values,
bootstrap_value,
dist_class,
model,
valid_mask,
config,
vf_loss_coeff=0.5,
entropy_coeff=0.01,
clip_rho_threshold=1.0,
clip_pg_rho_threshold=1.0,
):
"""Policy gradient loss with vtrace importance weighting.
VTraceLoss takes tensors of shape [T, B, ...], where `B` is the
batch_size. The reason we need to know `B` is for V-trace to properly
handle episode cut boundaries.
Args:
actions: An int|float32 tensor of shape [T, B, ACTION_SPACE].
actions_logp: A float32 tensor of shape [T, B].
actions_entropy: A float32 tensor of shape [T, B].
dones: A bool tensor of shape [T, B].
behaviour_action_logp: Tensor of shape [T, B].
behaviour_logits: A list with length of ACTION_SPACE of float32
tensors of shapes
[T, B, ACTION_SPACE[0]],
...,
[T, B, ACTION_SPACE[-1]]
target_logits: A list with length of ACTION_SPACE of float32
tensors of shapes
[T, B, ACTION_SPACE[0]],
...,
[T, B, ACTION_SPACE[-1]]
discount: A float32 scalar.
rewards: A float32 tensor of shape [T, B].
values: A float32 tensor of shape [T, B].
bootstrap_value: A float32 tensor of shape [B].
dist_class: action distribution class for logits.
valid_mask: A bool tensor of valid RNN input elements (#2992).
config: Algorithm config dict.
"""
import ray.rllib.algorithms.impala.vtrace_torch as vtrace
if valid_mask is None:
valid_mask = torch.ones_like(actions_logp)
# Compute vtrace on the CPU for better perf
# (devices handled inside `vtrace.multi_from_logits`).
device = behaviour_action_logp[0].device
self.vtrace_returns = vtrace.multi_from_logits(
behaviour_action_log_probs=behaviour_action_logp,
behaviour_policy_logits=behaviour_logits,
target_policy_logits=target_logits,
actions=torch.unbind(actions, dim=2),
discounts=(1.0 - dones.float()) * discount,
rewards=rewards,
values=values,
bootstrap_value=bootstrap_value,
dist_class=dist_class,
model=model,
clip_rho_threshold=clip_rho_threshold,
clip_pg_rho_threshold=clip_pg_rho_threshold,
)
# Move v-trace results back to GPU for actual loss computing.
self.value_targets = self.vtrace_returns.vs.to(device)
# The policy gradients loss.
self.pi_loss = -torch.sum(
actions_logp * self.vtrace_returns.pg_advantages.to(device) * valid_mask
)
# The baseline loss.
delta = (values - self.value_targets) * valid_mask
self.vf_loss = 0.5 * torch.sum(torch.pow(delta, 2.0))
# The entropy loss.
self.entropy = torch.sum(actions_entropy * valid_mask)
self.mean_entropy = self.entropy / torch.sum(valid_mask)
# The summed weighted loss.
self.total_loss = (
self.pi_loss + self.vf_loss * vf_loss_coeff - self.entropy * entropy_coeff
)
def make_time_major(policy, seq_lens, tensor, drop_last=False):
"""Swaps batch and trajectory axis.
Args:
policy: Policy reference
seq_lens: Sequence lengths if recurrent or None
tensor: A tensor or list of tensors to reshape.
drop_last: A bool indicating whether to drop the last
trajectory item.
Returns:
res: A tensor with swapped axes or a list of tensors with
swapped axes.
"""
if isinstance(tensor, (list, tuple)):
return [make_time_major(policy, seq_lens, t, drop_last) for t in tensor]
if policy.is_recurrent():
B = seq_lens.shape[0]
T = tensor.shape[0] // B
else:
# Important: chop the tensor into batches at known episode cut
# boundaries.
# TODO: (sven) this is kind of a hack and won't work for
# batch_mode=complete_episodes.
T = policy.config["rollout_fragment_length"]
B = tensor.shape[0] // T
rs = torch.reshape(tensor, [B, T] + list(tensor.shape[1:]))
# Swap B and T axes.
res = torch.transpose(rs, 1, 0)
if drop_last:
return res[:-1]
return res
class VTraceOptimizer:
"""Optimizer function for VTrace torch policies."""
def __init__(self):
pass
@override(TorchPolicyV2)
def optimizer(
self,
) -> Union[List["torch.optim.Optimizer"], "torch.optim.Optimizer"]:
if self.config["opt_type"] == "adam":
return torch.optim.Adam(params=self.model.parameters(), lr=self.cur_lr)
else:
return torch.optim.RMSprop(
params=self.model.parameters(),
lr=self.cur_lr,
weight_decay=self.config["decay"],
momentum=self.config["momentum"],
eps=self.config["epsilon"],
)
# VTrace mixins are placed in front of more general mixins to make sure
# their functions like optimizer() overrides all the other implementations
# (e.g., LearningRateSchedule.optimizer())
class ImpalaTorchPolicy(
VTraceOptimizer,
LearningRateSchedule,
EntropyCoeffSchedule,
TorchPolicyV2,
):
"""PyTorch policy class used with Impala."""
def __init__(self, observation_space, action_space, config):
config = dict(
ray.rllib.algorithms.impala.impala.ImpalaConfig().to_dict(), **config
)
VTraceOptimizer.__init__(self)
# Need to initialize learning rate variable before calling
# TorchPolicyV2.__init__.
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
EntropyCoeffSchedule.__init__(
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
)
TorchPolicyV2.__init__(
self,
observation_space,
action_space,
config,
max_seq_len=config["model"]["max_seq_len"],
)
# TODO: Don't require users to call this manually.
self._initialize_loss_from_dummy_batch()
@override(TorchPolicyV2)
def loss(
self,
model: ModelV2,
dist_class: Type[ActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
model_out, _ = model(train_batch)
action_dist = dist_class(model_out, model)
if isinstance(self.action_space, gym.spaces.Discrete):
is_multidiscrete = False
output_hidden_shape = [self.action_space.n]
elif isinstance(self.action_space, gym.spaces.MultiDiscrete):
is_multidiscrete = True
output_hidden_shape = self.action_space.nvec.astype(np.int32)
else:
is_multidiscrete = False
output_hidden_shape = 1
def _make_time_major(*args, **kw):
return make_time_major(
self, train_batch.get(SampleBatch.SEQ_LENS), *args, **kw
)
actions = train_batch[SampleBatch.ACTIONS]
dones = train_batch[SampleBatch.DONES]
rewards = train_batch[SampleBatch.REWARDS]
behaviour_action_logp = train_batch[SampleBatch.ACTION_LOGP]
behaviour_logits = train_batch[SampleBatch.ACTION_DIST_INPUTS]
if isinstance(output_hidden_shape, (list, tuple, np.ndarray)):
unpacked_behaviour_logits = torch.split(
behaviour_logits, list(output_hidden_shape), dim=1
)
unpacked_outputs = torch.split(model_out, list(output_hidden_shape), dim=1)
else:
unpacked_behaviour_logits = torch.chunk(
behaviour_logits, output_hidden_shape, dim=1
)
unpacked_outputs = torch.chunk(model_out, output_hidden_shape, dim=1)
values = model.value_function()
if self.is_recurrent():
max_seq_len = torch.max(train_batch[SampleBatch.SEQ_LENS])
mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
mask = torch.reshape(mask_orig, [-1])
else:
mask = torch.ones_like(rewards)
# Prepare actions for loss.
loss_actions = actions if is_multidiscrete else torch.unsqueeze(actions, dim=1)
# Inputs are reshaped from [B * T] => [(T|T-1), B] for V-trace calc.
drop_last = self.config["vtrace_drop_last_ts"]
loss = VTraceLoss(
actions=_make_time_major(loss_actions, drop_last=drop_last),
actions_logp=_make_time_major(
action_dist.logp(actions), drop_last=drop_last
),
actions_entropy=_make_time_major(
action_dist.entropy(), drop_last=drop_last
),
dones=_make_time_major(dones, drop_last=drop_last),
behaviour_action_logp=_make_time_major(
behaviour_action_logp, drop_last=drop_last
),
behaviour_logits=_make_time_major(
unpacked_behaviour_logits, drop_last=drop_last
),
target_logits=_make_time_major(unpacked_outputs, drop_last=drop_last),
discount=self.config["gamma"],
rewards=_make_time_major(rewards, drop_last=drop_last),
values=_make_time_major(values, drop_last=drop_last),
bootstrap_value=_make_time_major(values)[-1],
dist_class=TorchCategorical if is_multidiscrete else dist_class,
model=model,
valid_mask=_make_time_major(mask, drop_last=drop_last),
config=self.config,
vf_loss_coeff=self.config["vf_loss_coeff"],
entropy_coeff=self.entropy_coeff,
clip_rho_threshold=self.config["vtrace_clip_rho_threshold"],
clip_pg_rho_threshold=self.config["vtrace_clip_pg_rho_threshold"],
)
# Store values for stats function in model (tower), such that for
# multi-GPU, we do not override them during the parallel loss phase.
model.tower_stats["pi_loss"] = loss.pi_loss
model.tower_stats["vf_loss"] = loss.vf_loss
model.tower_stats["entropy"] = loss.entropy
model.tower_stats["mean_entropy"] = loss.mean_entropy
model.tower_stats["total_loss"] = loss.total_loss
values_batched = make_time_major(
self,
train_batch.get(SampleBatch.SEQ_LENS),
values,
drop_last=self.config["vtrace"] and drop_last,
)
model.tower_stats["vf_explained_var"] = explained_variance(
torch.reshape(loss.value_targets, [-1]), torch.reshape(values_batched, [-1])
)
return loss.total_loss
@override(TorchPolicyV2)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
return convert_to_numpy(
{
"cur_lr": self.cur_lr,
"total_loss": torch.mean(
torch.stack(self.get_tower_stats("total_loss"))
),
"policy_loss": torch.mean(torch.stack(self.get_tower_stats("pi_loss"))),
"entropy": torch.mean(
torch.stack(self.get_tower_stats("mean_entropy"))
),
"entropy_coeff": self.entropy_coeff,
"var_gnorm": global_norm(self.model.trainable_variables()),
"vf_loss": torch.mean(torch.stack(self.get_tower_stats("vf_loss"))),
"vf_explained_var": torch.mean(
torch.stack(self.get_tower_stats("vf_explained_var"))
),
}
)
@override(TorchPolicyV2)
def extra_grad_process(
self, optimizer: "torch.optim.Optimizer", loss: TensorType
) -> Dict[str, TensorType]:
return apply_grad_clipping(self, optimizer, loss)
@override(TorchPolicyV2)
def get_batch_divisibility_req(self) -> int:
return self.config["rollout_fragment_length"]