ray/doc/source/deploying-on-slurm.rst
Eric Liang a101812b9f
Replace --redis-address with --address in test, docs, tune, rllib (#5602)
* wip

* add tests and tune

* add ci

* test fix

* lint

* fix tests

* wip

* sugar dep
2019-09-01 16:53:02 -07:00

63 lines
1.6 KiB
ReStructuredText

Deploying on Slurm
==================
Clusters managed by Slurm may require that Ray is initialized as a part of the submitted job. This can be done by using ``srun`` within the submitted script. For example:
.. code-block:: bash
#!/bin/bash
#SBATCH --job-name=test
#SBATCH --cpus-per-task=20
#SBATCH --mem-per-cpu=1GB
#SBATCH --nodes=5
#SBATCH --tasks-per-node 1
worker_num=4 # Must be one less that the total number of nodes
module load Langs/Python/3.6.4 # This will vary depending on your environment
source venv/bin/activate
nodes=$(scontrol show hostnames $SLURM_JOB_NODELIST) # Getting the node names
nodes_array=( $nodes )
node1=${nodes_array[0]}
ip_prefix=$(srun --nodes=1 --ntasks=1 -w $node1 hostname --ip-address) # Making address
suffix=':6379'
ip_head=$ip_prefix$suffix
export ip_head # Exporting for latter access by trainer.py
srun --nodes=1 --ntasks=1 -w $node1 ray start --block --head --redis-port=6379 & # Starting the head
sleep 5
for (( i=1; i<=$worker_num; i++ ))
do
node2=${nodes_array[$i]}
srun --nodes=1 --ntasks=1 -w $node2 ray start --block --address=$ip_head & # Starting the workers
sleep 5
done
python trainer.py 100 # Pass the total number of allocated CPUs
.. code-block:: python
# trainer.py
import os
import sys
import time
import ray
ray.init(address=os.environ["ip_head"])
@ray.remote
def f():
time.sleep(1)
# The following takes one second (assuming that ray was able to access all of the allocated nodes).
start = time.time()
num_cpus = int(sys.argv[1])
ray.get([f.remote() for _ in range(num_cpus)])
end = time.time()
print(end - start)