ray/rllib/models/preprocessors.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

286 lines
9.2 KiB
Python

from collections import OrderedDict
import cv2
import logging
import numpy as np
import gym
from ray.rllib.utils.annotations import override, PublicAPI
ATARI_OBS_SHAPE = (210, 160, 3)
ATARI_RAM_OBS_SHAPE = (128, )
VALIDATION_INTERVAL = 100
logger = logging.getLogger(__name__)
@PublicAPI
class Preprocessor:
"""Defines an abstract observation preprocessor function.
Attributes:
shape (obj): Shape of the preprocessed output.
"""
@PublicAPI
def __init__(self, obs_space, options=None):
legacy_patch_shapes(obs_space)
self._obs_space = obs_space
if not options:
from ray.rllib.models.catalog import MODEL_DEFAULTS
self._options = MODEL_DEFAULTS.copy()
else:
self._options = options
self.shape = self._init_shape(obs_space, self._options)
self._size = int(np.product(self.shape))
self._i = 0
@PublicAPI
def _init_shape(self, obs_space, options):
"""Returns the shape after preprocessing."""
raise NotImplementedError
@PublicAPI
def transform(self, observation):
"""Returns the preprocessed observation."""
raise NotImplementedError
def write(self, observation, array, offset):
"""Alternative to transform for more efficient flattening."""
array[offset:offset + self._size] = self.transform(observation)
def check_shape(self, observation):
"""Checks the shape of the given observation."""
if self._i % VALIDATION_INTERVAL == 0:
if type(observation) is list and isinstance(
self._obs_space, gym.spaces.Box):
observation = np.array(observation)
try:
if not self._obs_space.contains(observation):
raise ValueError(
"Observation outside expected value range",
self._obs_space, observation)
except AttributeError:
raise ValueError(
"Observation for a Box/MultiBinary/MultiDiscrete space "
"should be an np.array, not a Python list.", observation)
self._i += 1
@property
@PublicAPI
def size(self):
return self._size
@property
@PublicAPI
def observation_space(self):
obs_space = gym.spaces.Box(-1., 1., self.shape, dtype=np.float32)
# Stash the unwrapped space so that we can unwrap dict and tuple spaces
# automatically in model.py
if (isinstance(self, TupleFlatteningPreprocessor)
or isinstance(self, DictFlatteningPreprocessor)):
obs_space.original_space = self._obs_space
return obs_space
class GenericPixelPreprocessor(Preprocessor):
"""Generic image preprocessor.
Note: for Atari games, use config {"preprocessor_pref": "deepmind"}
instead for deepmind-style Atari preprocessing.
"""
@override(Preprocessor)
def _init_shape(self, obs_space, options):
self._grayscale = options.get("grayscale")
self._zero_mean = options.get("zero_mean")
self._dim = options.get("dim")
if self._grayscale:
shape = (self._dim, self._dim, 1)
else:
shape = (self._dim, self._dim, 3)
return shape
@override(Preprocessor)
def transform(self, observation):
"""Downsamples images from (210, 160, 3) by the configured factor."""
self.check_shape(observation)
scaled = observation[25:-25, :, :]
if self._dim < 84:
scaled = cv2.resize(scaled, (84, 84))
# OpenAI: Resize by half, then down to 42x42 (essentially mipmapping).
# If we resize directly we lose pixels that, when mapped to 42x42,
# aren't close enough to the pixel boundary.
scaled = cv2.resize(scaled, (self._dim, self._dim))
if self._grayscale:
scaled = scaled.mean(2)
scaled = scaled.astype(np.float32)
# Rescale needed for maintaining 1 channel
scaled = np.reshape(scaled, [self._dim, self._dim, 1])
if self._zero_mean:
scaled = (scaled - 128) / 128
else:
scaled *= 1.0 / 255.0
return scaled
class AtariRamPreprocessor(Preprocessor):
@override(Preprocessor)
def _init_shape(self, obs_space, options):
return (128, )
@override(Preprocessor)
def transform(self, observation):
self.check_shape(observation)
return (observation - 128) / 128
class OneHotPreprocessor(Preprocessor):
@override(Preprocessor)
def _init_shape(self, obs_space, options):
return (self._obs_space.n, )
@override(Preprocessor)
def transform(self, observation):
self.check_shape(observation)
arr = np.zeros(self._obs_space.n)
arr[observation] = 1
return arr
@override(Preprocessor)
def write(self, observation, array, offset):
array[offset + observation] = 1
class NoPreprocessor(Preprocessor):
@override(Preprocessor)
def _init_shape(self, obs_space, options):
return self._obs_space.shape
@override(Preprocessor)
def transform(self, observation):
self.check_shape(observation)
return observation
@override(Preprocessor)
def write(self, observation, array, offset):
array[offset:offset + self._size] = np.array(
observation, copy=False).ravel()
@property
@override(Preprocessor)
def observation_space(self):
return self._obs_space
class TupleFlatteningPreprocessor(Preprocessor):
"""Preprocesses each tuple element, then flattens it all into a vector.
RLlib models will unpack the flattened output before _build_layers_v2().
"""
@override(Preprocessor)
def _init_shape(self, obs_space, options):
assert isinstance(self._obs_space, gym.spaces.Tuple)
size = 0
self.preprocessors = []
for i in range(len(self._obs_space.spaces)):
space = self._obs_space.spaces[i]
logger.debug("Creating sub-preprocessor for {}".format(space))
preprocessor = get_preprocessor(space)(space, self._options)
self.preprocessors.append(preprocessor)
size += preprocessor.size
return (size, )
@override(Preprocessor)
def transform(self, observation):
self.check_shape(observation)
array = np.zeros(self.shape)
self.write(observation, array, 0)
return array
@override(Preprocessor)
def write(self, observation, array, offset):
assert len(observation) == len(self.preprocessors), observation
for o, p in zip(observation, self.preprocessors):
p.write(o, array, offset)
offset += p.size
class DictFlatteningPreprocessor(Preprocessor):
"""Preprocesses each dict value, then flattens it all into a vector.
RLlib models will unpack the flattened output before _build_layers_v2().
"""
@override(Preprocessor)
def _init_shape(self, obs_space, options):
assert isinstance(self._obs_space, gym.spaces.Dict)
size = 0
self.preprocessors = []
for space in self._obs_space.spaces.values():
logger.debug("Creating sub-preprocessor for {}".format(space))
preprocessor = get_preprocessor(space)(space, self._options)
self.preprocessors.append(preprocessor)
size += preprocessor.size
return (size, )
@override(Preprocessor)
def transform(self, observation):
self.check_shape(observation)
array = np.zeros(self.shape)
self.write(observation, array, 0)
return array
@override(Preprocessor)
def write(self, observation, array, offset):
if not isinstance(observation, OrderedDict):
observation = OrderedDict(sorted(observation.items()))
assert len(observation) == len(self.preprocessors), \
(len(observation), len(self.preprocessors))
for o, p in zip(observation.values(), self.preprocessors):
p.write(o, array, offset)
offset += p.size
@PublicAPI
def get_preprocessor(space):
"""Returns an appropriate preprocessor class for the given space."""
legacy_patch_shapes(space)
obs_shape = space.shape
if isinstance(space, gym.spaces.Discrete):
preprocessor = OneHotPreprocessor
elif obs_shape == ATARI_OBS_SHAPE:
preprocessor = GenericPixelPreprocessor
elif obs_shape == ATARI_RAM_OBS_SHAPE:
preprocessor = AtariRamPreprocessor
elif isinstance(space, gym.spaces.Tuple):
preprocessor = TupleFlatteningPreprocessor
elif isinstance(space, gym.spaces.Dict):
preprocessor = DictFlatteningPreprocessor
else:
preprocessor = NoPreprocessor
return preprocessor
def legacy_patch_shapes(space):
"""Assigns shapes to spaces that don't have shapes.
This is only needed for older gym versions that don't set shapes properly
for Tuple and Discrete spaces.
"""
if not hasattr(space, "shape"):
if isinstance(space, gym.spaces.Discrete):
space.shape = ()
elif isinstance(space, gym.spaces.Tuple):
shapes = []
for s in space.spaces:
shape = legacy_patch_shapes(s)
shapes.append(shape)
space.shape = tuple(shapes)
return space.shape