mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
40 lines
1.4 KiB
Python
40 lines
1.4 KiB
Python
import random
|
|
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.replay_buffers.replay_buffer import ReplayBuffer
|
|
from ray.rllib.utils.replay_buffers.utils import warn_replay_buffer_capacity
|
|
from ray.rllib.utils.typing import SampleBatchType
|
|
from ray.util.annotations import DeveloperAPI
|
|
|
|
|
|
@DeveloperAPI
|
|
class SimpleReplayBuffer(ReplayBuffer):
|
|
"""Simple replay buffer that operates over entire batches."""
|
|
|
|
def __init__(self, capacity: int, storage_unit: str = "timesteps", **kwargs):
|
|
"""Initialize a SimpleReplayBuffer instance."""
|
|
super().__init__(capacity=capacity, storage_unit="timesteps", **kwargs)
|
|
self.replay_batches = []
|
|
self.replay_index = 0
|
|
|
|
@DeveloperAPI
|
|
@override(ReplayBuffer)
|
|
def add(self, batch: SampleBatchType, **kwargs) -> None:
|
|
warn_replay_buffer_capacity(item=batch, capacity=self.capacity)
|
|
if self.capacity > 0:
|
|
if len(self.replay_batches) < self.capacity:
|
|
self.replay_batches.append(batch)
|
|
else:
|
|
self.replay_batches[self.replay_index] = batch
|
|
self.replay_index += 1
|
|
self.replay_index %= self.capacity
|
|
|
|
@DeveloperAPI
|
|
@override(ReplayBuffer)
|
|
def sample(self, num_items: int, **kwargs) -> SampleBatchType:
|
|
return random.choice(self.replay_batches)
|
|
|
|
@DeveloperAPI
|
|
@override(ReplayBuffer)
|
|
def __len__(self):
|
|
return len(self.replay_batches)
|