mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
158 lines
5.5 KiB
Python
158 lines
5.5 KiB
Python
import gym
|
|
import logging
|
|
import time
|
|
from typing import Dict
|
|
|
|
from gym import spaces
|
|
import ray
|
|
from ray.rllib.algorithms.bandit.bandit_tf_model import (
|
|
DiscreteLinearModelThompsonSampling,
|
|
DiscreteLinearModelUCB,
|
|
DiscreteLinearModel,
|
|
ParametricLinearModelThompsonSampling,
|
|
ParametricLinearModelUCB,
|
|
)
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.models.modelv2 import restore_original_dimensions
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils.error import UnsupportedSpaceException
|
|
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
|
|
from ray.rllib.utils.tf_utils import make_tf_callable
|
|
from ray.rllib.utils.typing import TensorType, TrainerConfigDict
|
|
from ray.util.debug import log_once
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BanditPolicyOverrides:
|
|
def __init__(self):
|
|
@make_tf_callable(self.get_session())
|
|
def learn_on_batch(postprocessed_batch) -> Dict[str, TensorType]:
|
|
# INFOS dict can't be converted to Tensor with the interceptor.
|
|
postprocessed_batch.set_get_interceptor(None)
|
|
|
|
unflattened_obs = restore_original_dimensions(
|
|
postprocessed_batch[SampleBatch.CUR_OBS],
|
|
self.observation_space,
|
|
self.framework,
|
|
)
|
|
|
|
info = {}
|
|
|
|
start = time.time()
|
|
self.model.partial_fit(
|
|
unflattened_obs,
|
|
postprocessed_batch[SampleBatch.REWARDS],
|
|
postprocessed_batch[SampleBatch.ACTIONS],
|
|
)
|
|
|
|
infos = postprocessed_batch[SampleBatch.INFOS]
|
|
if "regret" in infos[0]:
|
|
regret = sum(
|
|
row["infos"]["regret"] for row in postprocessed_batch.rows()
|
|
)
|
|
self.regrets.append(regret)
|
|
info["cumulative_regret"] = sum(self.regrets)
|
|
else:
|
|
if log_once("no_regrets"):
|
|
logger.warning(
|
|
"The env did not report `regret` values in "
|
|
"its `info` return, ignoring."
|
|
)
|
|
info["update_latency"] = time.time() - start
|
|
return {LEARNER_STATS_KEY: info}
|
|
|
|
self.learn_on_batch = learn_on_batch
|
|
|
|
|
|
def validate_spaces(
|
|
policy: Policy,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
) -> None:
|
|
"""Validates the observation- and action spaces used for the Policy.
|
|
|
|
Args:
|
|
policy: The policy, whose spaces are being validated.
|
|
observation_space: The observation space to validate.
|
|
action_space: The action space to validate.
|
|
config: The Policy's config dict.
|
|
|
|
Raises:
|
|
UnsupportedSpaceException: If one of the spaces is not supported.
|
|
"""
|
|
# Only support single Box or single Discrete spaces.
|
|
if not isinstance(action_space, gym.spaces.Discrete):
|
|
msg = (
|
|
f"Action space ({action_space}) of {policy} is not supported for "
|
|
f"Bandit algorithms. Must be `Discrete`."
|
|
)
|
|
# Hint at using the MultiDiscrete to Discrete wrapper for Bandits.
|
|
if isinstance(action_space, gym.spaces.MultiDiscrete):
|
|
msg += (
|
|
" Try to wrap your environment with the "
|
|
"`ray.rllib.env.wrappers.recsim::"
|
|
"MultiDiscreteToDiscreteActionWrapper` class: `tune.register_env("
|
|
"[some str], lambda ctx: MultiDiscreteToDiscreteActionWrapper("
|
|
"[your gym env])); config = {'env': [some str]}`"
|
|
)
|
|
raise UnsupportedSpaceException(msg)
|
|
|
|
|
|
def make_model(policy, obs_space, action_space, config):
|
|
_, logit_dim = ModelCatalog.get_action_dist(
|
|
action_space, config["model"], framework="tf"
|
|
)
|
|
|
|
model_cls = DiscreteLinearModel
|
|
|
|
if hasattr(obs_space, "original_space"):
|
|
original_space = obs_space.original_space
|
|
else:
|
|
original_space = obs_space
|
|
|
|
exploration_config = config.get("exploration_config")
|
|
# Model is dependent on exploration strategy because of its implicitness
|
|
|
|
# TODO: Have a separate model catalogue for bandits
|
|
if exploration_config:
|
|
if exploration_config["type"] == "ThompsonSampling":
|
|
if isinstance(original_space, spaces.Dict):
|
|
assert (
|
|
"item" in original_space.spaces
|
|
), "Cannot find 'item' key in observation space"
|
|
model_cls = ParametricLinearModelThompsonSampling
|
|
else:
|
|
model_cls = DiscreteLinearModelThompsonSampling
|
|
elif exploration_config["type"] == "UpperConfidenceBound":
|
|
if isinstance(original_space, spaces.Dict):
|
|
assert (
|
|
"item" in original_space.spaces
|
|
), "Cannot find 'item' key in observation space"
|
|
model_cls = ParametricLinearModelUCB
|
|
else:
|
|
model_cls = DiscreteLinearModelUCB
|
|
|
|
model = model_cls(
|
|
obs_space, action_space, logit_dim, config["model"], name="LinearModel"
|
|
)
|
|
return model
|
|
|
|
|
|
def after_init(policy, *args):
|
|
policy.regrets = []
|
|
BanditPolicyOverrides.__init__(policy)
|
|
|
|
|
|
BanditTFPolicy = build_tf_policy(
|
|
name="BanditTFPolicy",
|
|
get_default_config=lambda: ray.rllib.algorithms.bandit.bandit.DEFAULT_CONFIG,
|
|
validate_spaces=validate_spaces,
|
|
make_model=make_model,
|
|
loss_fn=None,
|
|
mixins=[BanditPolicyOverrides],
|
|
after_init=after_init,
|
|
)
|