ray/rllib/examples/multi_agent_custom_policy.py

73 lines
2.3 KiB
Python

"""Example of running a custom hand-coded policy alongside trainable policies.
This example has two policies:
(1) a simple PG policy
(2) a hand-coded policy that acts at random in the env (doesn't learn)
In the console output, you can see the PG policy does much better than random:
Result for PG_multi_cartpole_0:
...
policy_reward_mean:
pg_policy: 185.23
random: 21.255
...
"""
import argparse
import gym
import os
import ray
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
from ray.rllib.examples.policy.random_policy import RandomPolicy
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=20)
parser.add_argument("--stop-reward", type=float, default=150)
parser.add_argument("--stop-timesteps", type=int, default=100000)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
# Simple environment with 4 independent cartpole entities
register_env("multi_agent_cartpole",
lambda _: MultiAgentCartPole({"num_agents": 4}))
single_env = gym.make("CartPole-v0")
obs_space = single_env.observation_space
act_space = single_env.action_space
stop = {
"training_iteration": args.stop_iters,
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
}
config = {
"env": "multi_agent_cartpole",
"multiagent": {
"policies": {
"pg_policy": (None, obs_space, act_space, {
"framework": "torch" if args.torch else "tf",
}),
"random": (RandomPolicy, obs_space, act_space, {}),
},
"policy_mapping_fn": (
lambda agent_id: ["pg_policy", "random"][agent_id % 2]),
},
"framework": "torch" if args.torch else "tf",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
}
results = tune.run("PG", config=config, stop=stop, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()