ray/rllib/agents/ddpg/ddpg.py
Sven Mika 19c8033df2
[RLlib] Fix most remaining RLlib algos for running with trajectory view API. (#12366)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* LINT and fixes.
MB-MPO and MAML not working yet.

* wip

* update

* update

* rmeove

* remove dep

* higher

* Update requirements_rllib.txt

* Update requirements_rllib.txt

* relpos

* no mbmpo

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-12-01 17:41:10 -08:00

185 lines
7.5 KiB
Python

import logging
from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.dqn.dqn import GenericOffPolicyTrainer
from ray.rllib.agents.ddpg.ddpg_tf_policy import DDPGTFPolicy
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Twin Delayed DDPG (TD3) and Soft Actor-Critic (SAC) tricks ===
# TD3: https://spinningup.openai.com/en/latest/algorithms/td3.html
# In addition to settings below, you can use "exploration_noise_type" and
# "exploration_gauss_act_noise" to get IID Gaussian exploration noise
# instead of OU exploration noise.
# twin Q-net
"twin_q": False,
# delayed policy update
"policy_delay": 1,
# target policy smoothing
# (this also replaces OU exploration noise with IID Gaussian exploration
# noise, for now)
"smooth_target_policy": False,
# gaussian stddev of target action noise for smoothing
"target_noise": 0.2,
# target noise limit (bound)
"target_noise_clip": 0.5,
# === Evaluation ===
# Evaluate with epsilon=0 every `evaluation_interval` training iterations.
# The evaluation stats will be reported under the "evaluation" metric key.
# Note that evaluation is currently not parallelized, and that for Ape-X
# metrics are already only reported for the lowest epsilon workers.
"evaluation_interval": None,
# Number of episodes to run per evaluation period.
"evaluation_num_episodes": 10,
# === Model ===
# Apply a state preprocessor with spec given by the "model" config option
# (like other RL algorithms). This is mostly useful if you have a weird
# observation shape, like an image. Disabled by default.
"use_state_preprocessor": False,
# Postprocess the policy network model output with these hidden layers. If
# use_state_preprocessor is False, then these will be the *only* hidden
# layers in the network.
"actor_hiddens": [400, 300],
# Hidden layers activation of the postprocessing stage of the policy
# network
"actor_hidden_activation": "relu",
# Postprocess the critic network model output with these hidden layers;
# again, if use_state_preprocessor is True, then the state will be
# preprocessed by the model specified with the "model" config option first.
"critic_hiddens": [400, 300],
# Hidden layers activation of the postprocessing state of the critic.
"critic_hidden_activation": "relu",
# N-step Q learning
"n_step": 1,
# === Exploration ===
"exploration_config": {
# DDPG uses OrnsteinUhlenbeck (stateful) noise to be added to NN-output
# actions (after a possible pure random phase of n timesteps).
"type": "OrnsteinUhlenbeckNoise",
# For how many timesteps should we return completely random actions,
# before we start adding (scaled) noise?
"random_timesteps": 1000,
# The OU-base scaling factor to always apply to action-added noise.
"ou_base_scale": 0.1,
# The OU theta param.
"ou_theta": 0.15,
# The OU sigma param.
"ou_sigma": 0.2,
# The initial noise scaling factor.
"initial_scale": 1.0,
# The final noise scaling factor.
"final_scale": 1.0,
# Timesteps over which to anneal scale (from initial to final values).
"scale_timesteps": 10000,
},
# Number of env steps to optimize for before returning
"timesteps_per_iteration": 1000,
# Extra configuration that disables exploration.
"evaluation_config": {
"explore": False
},
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": 50000,
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Final value of beta
"final_prioritized_replay_beta": 0.4,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Whether to LZ4 compress observations
"compress_observations": False,
# If set, this will fix the ratio of replayed from a buffer and learned on
# timesteps to sampled from an environment and stored in the replay buffer
# timesteps. Otherwise, the replay will proceed at the native ratio
# determined by (train_batch_size / rollout_fragment_length).
"training_intensity": None,
# === Optimization ===
# Learning rate for the critic (Q-function) optimizer.
"critic_lr": 1e-3,
# Learning rate for the actor (policy) optimizer.
"actor_lr": 1e-3,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 0,
# Update the target by \tau * policy + (1-\tau) * target_policy
"tau": 0.002,
# If True, use huber loss instead of squared loss for critic network
# Conventionally, no need to clip gradients if using a huber loss
"use_huber": False,
# Threshold of a huber loss
"huber_threshold": 1.0,
# Weights for L2 regularization
"l2_reg": 1e-6,
# If not None, clip gradients during optimization at this value
"grad_clip": None,
# How many steps of the model to sample before learning starts.
"learning_starts": 1500,
# Update the replay buffer with this many samples at once. Note that this
# setting applies per-worker if num_workers > 1.
"rollout_fragment_length": 1,
# Size of a batched sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 256,
# === Parallelism ===
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you're using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span
"min_iter_time_s": 1,
})
# __sphinx_doc_end__
# yapf: enable
def validate_config(config):
if config["model"]["custom_model"]:
logger.warning(
"Setting use_state_preprocessor=True since a custom model "
"was specified.")
config["use_state_preprocessor"] = True
if config["grad_clip"] is not None and config["grad_clip"] <= 0.0:
raise ValueError("`grad_clip` value must be > 0.0!")
if config["exploration_config"]["type"] == "ParameterNoise":
if config["batch_mode"] != "complete_episodes":
logger.warning(
"ParameterNoise Exploration requires `batch_mode` to be "
"'complete_episodes'. Setting batch_mode=complete_episodes.")
config["batch_mode"] = "complete_episodes"
def get_policy_class(config):
if config["framework"] == "torch":
from ray.rllib.agents.ddpg.ddpg_torch_policy import DDPGTorchPolicy
return DDPGTorchPolicy
else:
return DDPGTFPolicy
DDPGTrainer = GenericOffPolicyTrainer.with_updates(
name="DDPG",
default_config=DEFAULT_CONFIG,
default_policy=DDPGTFPolicy,
get_policy_class=get_policy_class,
validate_config=validate_config,
)