ray/test/jenkins_tests/run_multi_node_tests.sh
Eric Liang 9f3a4fce50 [rllib] Parallelize sample collection and gradient computation in DQN (#746)
* wip

* works with cartpole

* lint

* fix pg

* comment

* action dist rename

* preprocessor

* fix test

* typo

* fix the action[0] nonsense

* revert

* satisfy the lint

* wip

* wip

* works with cartpole

* lint

* fix pg

* comment

* action dist rename

* preprocessor

* fix test

* typo

* fix the action[0] nonsense

* revert

* satisfy the lint

* Minor indentation changes.

* fix merge

* add humanoid

* initial dqn refactor

* remove tfutil

* fix calls

* fix tf errors 1

* closer

* runs now

* lint

* tensorboard graph

* fix linting

* more 4 space

* fix

* fix linT

* more lint

* oops

* es parity

* remove example.py

* fix training bug

* add cartpole demo

* try fixing cartpole

* allow model options, configure cartpole

* debug

* simplify

* no dueling

* avoid out of file handles

* Test dqn in jenkins.

* Minor formatting.

* lint

* fix py3

* fix issue

* remove chekcpoint

* revert

* Fixit

* sanity check configs

* update cuda

* fix

* parallel gradient computation

* update

* upd

* bug

* upd

* always record training stats

* fix

* comments

* revert assert

* add gpu mask

* fofset

* a tie

* Merge

* fix

* fix

* fix examples

* A3C -> DQN

* fix dqn test

* remove submodule

* fix linting
2017-09-29 00:06:51 -07:00

106 lines
4 KiB
Bash
Executable file

#!/usr/bin/env bash
# Cause the script to exit if a single command fails.
set -e
# Show explicitly which commands are currently running.
set -x
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
echo "Using Docker image" $DOCKER_SHA
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=10 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=5 \
--num-gpus=0,1,2,3,4 \
--num-drivers=7 \
--driver-locations=0,1,0,1,2,3,4 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=2 \
--num-gpus=0,0,5,6,50 \
--num-drivers=100 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=1 \
--mem-size=60G \
--shm-size=60G \
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py
# Test that the example applications run.
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/lbfgs/driver.py
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/rl_pong/driver.py \
# --iterations=3
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_simple.py
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_adaptive.py
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v0 \
--alg A3C \
--num-iterations 2 \
--config '{"num_workers": 16}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--alg PPO \
--num-iterations 2 \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--alg PPO \
--num-iterations 2 \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "use_gae": false}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--alg ES \
--num-iterations 2 \
--config '{"stepsize": 0.01}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--alg DQN \
--num-iterations 2 \
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongNoFrameskip-v4 \
--alg DQN \
--num-iterations 2 \
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MontezumaRevenge-v0 \
--alg PPO \
--num-iterations 2 \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"downscale_factor": 4, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}, "extra_frameskip": 4}'