ray/rllib/examples/models/action_mask_model.py

100 lines
3.5 KiB
Python

from gym.spaces import Dict
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.torch_ops import FLOAT_MIN
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
class ActionMaskModel(TFModelV2):
"""Model that handles simple discrete action masking.
This assumes the outputs are logits for a single Categorical action dist.
Getting this to work with a more complex output (e.g., if the action space
is a tuple of several distributions) is also possible but left as an
exercise to the reader.
"""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name, **kwargs):
orig_space = getattr(obs_space, "original_space", obs_space)
assert isinstance(orig_space, Dict) and \
"action_mask" in orig_space.spaces and \
"observations" in orig_space.spaces
super().__init__(obs_space, action_space, num_outputs, model_config,
name)
self.internal_model = FullyConnectedNetwork(
orig_space["observations"], action_space, num_outputs,
model_config, name + "_internal")
def forward(self, input_dict, state, seq_lens):
# Extract the available actions tensor from the observation.
action_mask = input_dict["obs"]["action_mask"]
# Compute the unmasked logits.
logits, _ = self.internal_model({
"obs": input_dict["obs"]["observations"]
})
# Convert action_mask into a [0.0 || -inf]-type mask.
inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
masked_logits = logits + inf_mask
# Return masked logits.
return masked_logits, state
def value_function(self):
return self.internal_model.value_function()
class TorchActionMaskModel(TorchModelV2, nn.Module):
"""PyTorch version of above ActionMaskingModel."""
def __init__(
self,
obs_space,
action_space,
num_outputs,
model_config,
name,
**kwargs,
):
orig_space = getattr(obs_space, "original_space", obs_space)
assert isinstance(orig_space, Dict) and \
"action_mask" in orig_space.spaces and \
"observations" in orig_space.spaces
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name, **kwargs)
nn.Module.__init__(self)
self.internal_model = TorchFC(orig_space["observations"], action_space,
num_outputs, model_config,
name + "_internal")
def forward(self, input_dict, state, seq_lens):
# Extract the available actions tensor from the observation.
action_mask = input_dict["obs"]["action_mask"]
# Compute the unmasked logits.
logits, _ = self.internal_model({
"obs": input_dict["obs"]["observations"]
})
# Convert action_mask into a [0.0 || -inf]-type mask.
inf_mask = torch.clamp(torch.log(action_mask), min=FLOAT_MIN)
masked_logits = logits + inf_mask
# Return masked logits.
return masked_logits, state
def value_function(self):
return self.internal_model.value_function()