mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00
52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
import argparse
|
|
|
|
import modin.pandas as pd
|
|
import ray
|
|
from xgboost_ray import RayDMatrix, RayParams, train
|
|
|
|
FILE_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/" \
|
|
"00280/HIGGS.csv.gz"
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--smoke-test", action="store_true", help="Finish quickly for testing.")
|
|
args = parser.parse_args()
|
|
|
|
|
|
def main():
|
|
ray.client("anyscale://").connect()
|
|
|
|
print("Loading HIGGS data.")
|
|
|
|
colnames = ["label"] + ["feature-%02d" % i for i in range(1, 29)]
|
|
|
|
if args.smoke_test:
|
|
data = pd.read_csv(FILE_URL, names=colnames, nrows=1000)
|
|
else:
|
|
data = pd.read_csv(FILE_URL, names=colnames)
|
|
|
|
print("Loaded HIGGS data.")
|
|
|
|
# partition on a column
|
|
df_train = data[(data["feature-01"] < 0.4)]
|
|
df_validation = data[(data["feature-01"] >= 0.4)
|
|
& (data["feature-01"] < 0.8)]
|
|
|
|
dtrain = RayDMatrix(df_train, label="label", columns=colnames)
|
|
dvalidation = RayDMatrix(df_validation, label="label")
|
|
|
|
evallist = [(dvalidation, "eval")]
|
|
evals_result = {}
|
|
config = {"tree_method": "hist", "eval_metric": ["logloss", "error"]}
|
|
train(
|
|
params=config,
|
|
dtrain=dtrain,
|
|
evals_result=evals_result,
|
|
ray_params=RayParams(
|
|
max_actor_restarts=1, num_actors=4, cpus_per_actor=2),
|
|
num_boost_round=100,
|
|
evals=evallist)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|