ray/rllib/examples/env/parametric_actions_cartpole.py
Avnish Narayan 026bf01071
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535)
* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7

* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

* Reformatting

* Fixing tests

* Move atari-py install conditional to req.txt

* migrate to new ale install method

* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

Move atari-py install conditional to req.txt

migrate to new ale install method

Make parametric_actions_cartpole return float32 actions/obs

Adding type conversions if obs/actions don't match space

Add utils to make elements match gym space dtypes

Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 16:24:00 +01:00

133 lines
5 KiB
Python

import gym
from gym.spaces import Box, Dict, Discrete
import numpy as np
import random
class ParametricActionsCartPole(gym.Env):
"""Parametric action version of CartPole.
In this env there are only ever two valid actions, but we pretend there are
actually up to `max_avail_actions` actions that can be taken, and the two
valid actions are randomly hidden among this set.
At each step, we emit a dict of:
- the actual cart observation
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
- the list of action embeddings (w/ zeroes for invalid actions) (e.g.,
[[0, 0],
[0, 0],
[-0.2322, -0.2569],
[0, 0],
[0, 0],
[0.7878, 1.2297]] for max_avail_actions=6)
In a real environment, the actions embeddings would be larger than two
units of course, and also there would be a variable number of valid actions
per step instead of always [LEFT, RIGHT].
"""
def __init__(self, max_avail_actions):
# Use simple random 2-unit action embeddings for [LEFT, RIGHT]
self.left_action_embed = np.random.randn(2)
self.right_action_embed = np.random.randn(2)
self.action_space = Discrete(max_avail_actions)
self.wrapped = gym.make("CartPole-v0")
self.observation_space = Dict({
"action_mask": Box(
0, 1, shape=(max_avail_actions, ), dtype=np.float32),
"avail_actions": Box(-10, 10, shape=(max_avail_actions, 2)),
"cart": self.wrapped.observation_space,
})
def update_avail_actions(self):
self.action_assignments = np.array(
[[0., 0.]] * self.action_space.n, dtype=np.float32)
self.action_mask = np.array(
[0.] * self.action_space.n, dtype=np.float32)
self.left_idx, self.right_idx = random.sample(
range(self.action_space.n), 2)
self.action_assignments[self.left_idx] = self.left_action_embed
self.action_assignments[self.right_idx] = self.right_action_embed
self.action_mask[self.left_idx] = 1
self.action_mask[self.right_idx] = 1
def reset(self):
self.update_avail_actions()
return {
"action_mask": self.action_mask,
"avail_actions": self.action_assignments,
"cart": self.wrapped.reset(),
}
def step(self, action):
if action == self.left_idx:
actual_action = 0
elif action == self.right_idx:
actual_action = 1
else:
raise ValueError(
"Chosen action was not one of the non-zero action embeddings",
action, self.action_assignments, self.action_mask,
self.left_idx, self.right_idx)
orig_obs, rew, done, info = self.wrapped.step(actual_action)
self.update_avail_actions()
self.action_mask = self.action_mask.astype(np.float32)
obs = {
"action_mask": self.action_mask,
"avail_actions": self.action_assignments,
"cart": orig_obs,
}
return obs, rew, done, info
class ParametricActionsCartPoleNoEmbeddings(gym.Env):
"""Same as the above ParametricActionsCartPole.
However, action embeddings are not published inside observations,
but will be learnt by the model.
At each step, we emit a dict of:
- the actual cart observation
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
- action embeddings (w/ "dummy embedding" for invalid actions) are
outsourced in the model and will be learned.
"""
def __init__(self, max_avail_actions):
# Randomly set which two actions are valid and available.
self.left_idx, self.right_idx = random.sample(
range(max_avail_actions), 2)
self.valid_avail_actions_mask = np.array(
[0.] * max_avail_actions, dtype=np.float32)
self.valid_avail_actions_mask[self.left_idx] = 1
self.valid_avail_actions_mask[self.right_idx] = 1
self.action_space = Discrete(max_avail_actions)
self.wrapped = gym.make("CartPole-v0")
self.observation_space = Dict({
"valid_avail_actions_mask": Box(0, 1, shape=(max_avail_actions, )),
"cart": self.wrapped.observation_space,
})
def reset(self):
return {
"valid_avail_actions_mask": self.valid_avail_actions_mask,
"cart": self.wrapped.reset(),
}
def step(self, action):
if action == self.left_idx:
actual_action = 0
elif action == self.right_idx:
actual_action = 1
else:
raise ValueError(
"Chosen action was not one of the non-zero action embeddings",
action, self.valid_avail_actions_mask, self.left_idx,
self.right_idx)
orig_obs, rew, done, info = self.wrapped.step(actual_action)
obs = {
"valid_avail_actions_mask": self.valid_avail_actions_mask,
"cart": orig_obs,
}
return obs, rew, done, info