mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
##########
|
|
# Contribution by the Center on Long-Term Risk:
|
|
# https://github.com/longtermrisk/marltoolbox
|
|
##########
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.ppo import PPOTrainer
|
|
from ray.rllib.examples.env.coin_game_non_vectorized_env import \
|
|
CoinGame, AsymCoinGame
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--tf", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=2000)
|
|
|
|
|
|
def main(debug, stop_iters=2000, tf=False, asymmetric_env=False):
|
|
train_n_replicates = 1 if debug else 1
|
|
seeds = list(range(train_n_replicates))
|
|
|
|
ray.init()
|
|
|
|
stop = {
|
|
"training_iteration": 2 if debug else stop_iters,
|
|
}
|
|
|
|
env_config = {
|
|
"players_ids": ["player_red", "player_blue"],
|
|
"max_steps": 20,
|
|
"grid_size": 3,
|
|
"get_additional_info": True,
|
|
}
|
|
|
|
rllib_config = {
|
|
"env": AsymCoinGame if asymmetric_env else CoinGame,
|
|
"env_config": env_config,
|
|
"multiagent": {
|
|
"policies": {
|
|
env_config["players_ids"][0]: (
|
|
None, AsymCoinGame(env_config).OBSERVATION_SPACE,
|
|
AsymCoinGame.ACTION_SPACE, {}),
|
|
env_config["players_ids"][1]: (
|
|
None, AsymCoinGame(env_config).OBSERVATION_SPACE,
|
|
AsymCoinGame.ACTION_SPACE, {}),
|
|
},
|
|
"policy_mapping_fn": lambda agent_id: agent_id,
|
|
},
|
|
# Size of batches collected from each worker.
|
|
"rollout_fragment_length": 20,
|
|
# Number of timesteps collected for each SGD round.
|
|
# This defines the size of each SGD epoch.
|
|
"train_batch_size": 512,
|
|
"model": {
|
|
"dim": env_config["grid_size"],
|
|
"conv_filters": [[16, [3, 3], 1],
|
|
[32, [3, 3],
|
|
1]] # [Channel, [Kernel, Kernel], Stride]]
|
|
},
|
|
"lr": 5e-3,
|
|
"seed": tune.grid_search(seeds),
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"framework": "tf" if tf else "torch",
|
|
}
|
|
|
|
tune_analysis = tune.run(
|
|
PPOTrainer,
|
|
config=rllib_config,
|
|
stop=stop,
|
|
checkpoint_freq=0,
|
|
checkpoint_at_end=True,
|
|
name="PPO_AsymCG")
|
|
ray.shutdown()
|
|
return tune_analysis
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
debug_mode = True
|
|
use_asymmetric_env = False
|
|
main(debug_mode, args.stop_iters, args.tf, use_asymmetric_env)
|