mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Add flake8 to Travis * Add flake8-comprehensions [flake8 plugin](https://github.com/adamchainz/flake8-comprehensions) that checks for useless constructions. * Use generators instead of lists where appropriate A lot of the builtins can take in generators instead of lists. This commit applies `flake8-comprehensions` to find them. * Fix lint error * Fix some string formatting The rest can be fixed in another PR * Fix compound literals syntax This should probably be merged after #1963. * dict() -> {} * Use dict literal syntax dict(...) -> {...} * Rewrite nested dicts * Fix hanging indent * Add missing import * Add missing quote * fmt * Add missing whitespace * rm duplicate pip install This is already installed in another file. * Fix indent * move `merge_dicts` into utils * Bring up to date with `master` * Add automatic syntax upgrade * rm pyupgrade In case users want to still use it on their own, the upgrade-syn.sh script was left in the `.travis` dir.
239 lines
9.7 KiB
Python
239 lines
9.7 KiB
Python
"""ResNet training script, with some code from
|
|
https://github.com/tensorflow/models/tree/master/resnet.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import os
|
|
import numpy as np
|
|
import ray
|
|
import tensorflow as tf
|
|
|
|
import cifar_input
|
|
import resnet_model
|
|
|
|
# Tensorflow must be at least version 1.2.0 for the example to work.
|
|
tf_major = int(tf.__version__.split(".")[0])
|
|
tf_minor = int(tf.__version__.split(".")[1])
|
|
if (tf_major < 1) or (tf_major == 1 and tf_minor < 2):
|
|
raise Exception("Your Tensorflow version is less than 1.2.0. Please "
|
|
"update Tensorflow to the latest version.")
|
|
|
|
parser = argparse.ArgumentParser(description="Run the ResNet example.")
|
|
parser.add_argument("--dataset", default="cifar10", type=str,
|
|
help="Dataset to use: cifar10 or cifar100.")
|
|
parser.add_argument("--train_data_path",
|
|
default="cifar-10-batches-bin/data_batch*", type=str,
|
|
help="Data path for the training data.")
|
|
parser.add_argument("--eval_data_path",
|
|
default="cifar-10-batches-bin/test_batch.bin", type=str,
|
|
help="Data path for the testing data.")
|
|
parser.add_argument("--eval_dir", default="/tmp/resnet-model/eval", type=str,
|
|
help="Data path for the tensorboard logs.")
|
|
parser.add_argument("--eval_batch_count", default=50, type=int,
|
|
help="Number of batches to evaluate over.")
|
|
parser.add_argument("--num_gpus", default=0, type=int,
|
|
help="Number of GPUs to use for training.")
|
|
parser.add_argument("--redis-address", default=None, type=str,
|
|
help="The Redis address of the cluster.")
|
|
|
|
FLAGS = parser.parse_args()
|
|
|
|
# Determines if the actors require a gpu or not.
|
|
use_gpu = 1 if int(FLAGS.num_gpus) > 0 else 0
|
|
|
|
|
|
@ray.remote
|
|
def get_data(path, size, dataset):
|
|
# Retrieves all preprocessed images and labels using a tensorflow queue.
|
|
# This only uses the cpu.
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
with tf.device("/cpu:0"):
|
|
dataset = cifar_input.build_data(path, size, dataset)
|
|
sess = tf.Session()
|
|
images, labels = sess.run(dataset)
|
|
sess.close()
|
|
return images, labels
|
|
|
|
|
|
@ray.remote(num_gpus=use_gpu)
|
|
class ResNetTrainActor(object):
|
|
def __init__(self, data, dataset, num_gpus):
|
|
if num_gpus > 0:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
|
|
[str(i) for i in ray.get_gpu_ids()])
|
|
hps = resnet_model.HParams(
|
|
batch_size=128,
|
|
num_classes=100 if dataset == "cifar100" else 10,
|
|
min_lrn_rate=0.0001,
|
|
lrn_rate=0.1,
|
|
num_residual_units=5,
|
|
use_bottleneck=False,
|
|
weight_decay_rate=0.0002,
|
|
relu_leakiness=0.1,
|
|
optimizer="mom",
|
|
num_gpus=num_gpus)
|
|
|
|
# We seed each actor differently so that each actor operates on a
|
|
# different subset of data.
|
|
if num_gpus > 0:
|
|
tf.set_random_seed(ray.get_gpu_ids()[0] + 1)
|
|
else:
|
|
# Only a single actor in this case.
|
|
tf.set_random_seed(1)
|
|
|
|
with tf.device("/gpu:0" if num_gpus > 0 else "/cpu:0"):
|
|
# Build the model.
|
|
images, labels = cifar_input.build_input(data,
|
|
hps.batch_size, dataset,
|
|
False)
|
|
self.model = resnet_model.ResNet(hps, images, labels, "train")
|
|
self.model.build_graph()
|
|
config = tf.ConfigProto(allow_soft_placement=True)
|
|
config.gpu_options.allow_growth = True
|
|
sess = tf.Session(config=config)
|
|
self.model.variables.set_session(sess)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
self.steps = 10
|
|
|
|
def compute_steps(self, weights):
|
|
# This method sets the weights in the network, trains the network
|
|
# self.steps times, and returns the new weights.
|
|
self.model.variables.set_weights(weights)
|
|
for i in range(self.steps):
|
|
self.model.variables.sess.run(self.model.train_op)
|
|
return self.model.variables.get_weights()
|
|
|
|
def get_weights(self):
|
|
# Note that the driver cannot directly access fields of the class,
|
|
# so helper methods must be created.
|
|
return self.model.variables.get_weights()
|
|
|
|
|
|
@ray.remote
|
|
class ResNetTestActor(object):
|
|
def __init__(self, data, dataset, eval_batch_count, eval_dir):
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
hps = resnet_model.HParams(
|
|
batch_size=100,
|
|
num_classes=100 if dataset == "cifar100" else 10,
|
|
min_lrn_rate=0.0001,
|
|
lrn_rate=0.1,
|
|
num_residual_units=5,
|
|
use_bottleneck=False,
|
|
weight_decay_rate=0.0002,
|
|
relu_leakiness=0.1,
|
|
optimizer="mom",
|
|
num_gpus=0)
|
|
with tf.device("/cpu:0"):
|
|
# Builds the testing network.
|
|
images, labels = cifar_input.build_input(data,
|
|
hps.batch_size, dataset,
|
|
False)
|
|
self.model = resnet_model.ResNet(hps, images, labels, "eval")
|
|
self.model.build_graph()
|
|
config = tf.ConfigProto(allow_soft_placement=True)
|
|
config.gpu_options.allow_growth = True
|
|
sess = tf.Session(config=config)
|
|
self.model.variables.set_session(sess)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
# Initializing parameters for tensorboard.
|
|
self.best_precision = 0.0
|
|
self.eval_batch_count = eval_batch_count
|
|
self.summary_writer = tf.summary.FileWriter(eval_dir, sess.graph)
|
|
# The IP address where tensorboard logs will be on.
|
|
self.ip_addr = ray.services.get_node_ip_address()
|
|
|
|
def accuracy(self, weights, train_step):
|
|
# Sets the weights, computes the accuracy and other metrics
|
|
# over eval_batches, and outputs to tensorboard.
|
|
self.model.variables.set_weights(weights)
|
|
total_prediction, correct_prediction = 0, 0
|
|
model = self.model
|
|
sess = self.model.variables.sess
|
|
for _ in range(self.eval_batch_count):
|
|
summaries, loss, predictions, truth = sess.run(
|
|
[model.summaries, model.cost, model.predictions,
|
|
model.labels])
|
|
|
|
truth = np.argmax(truth, axis=1)
|
|
predictions = np.argmax(predictions, axis=1)
|
|
correct_prediction += np.sum(truth == predictions)
|
|
total_prediction += predictions.shape[0]
|
|
|
|
precision = 1.0 * correct_prediction / total_prediction
|
|
self.best_precision = max(precision, self.best_precision)
|
|
precision_summ = tf.Summary()
|
|
precision_summ.value.add(
|
|
tag="Precision", simple_value=precision)
|
|
self.summary_writer.add_summary(precision_summ, train_step)
|
|
best_precision_summ = tf.Summary()
|
|
best_precision_summ.value.add(
|
|
tag="Best Precision", simple_value=self.best_precision)
|
|
self.summary_writer.add_summary(best_precision_summ, train_step)
|
|
self.summary_writer.add_summary(summaries, train_step)
|
|
tf.logging.info("loss: %.3f, precision: %.3f, best precision: %.3f" %
|
|
(loss, precision, self.best_precision))
|
|
self.summary_writer.flush()
|
|
return precision
|
|
|
|
def get_ip_addr(self):
|
|
# As above, a helper method must be created to access the field from
|
|
# the driver.
|
|
return self.ip_addr
|
|
|
|
|
|
def train():
|
|
num_gpus = FLAGS.num_gpus
|
|
if FLAGS.redis_address is None:
|
|
ray.init(num_gpus=num_gpus, redirect_output=True)
|
|
else:
|
|
ray.init(redis_address=FLAGS.redis_address)
|
|
train_data = get_data.remote(FLAGS.train_data_path, 50000, FLAGS.dataset)
|
|
test_data = get_data.remote(FLAGS.eval_data_path, 10000, FLAGS.dataset)
|
|
# Creates an actor for each gpu, or one if only using the cpu. Each actor
|
|
# has access to the dataset.
|
|
if FLAGS.num_gpus > 0:
|
|
train_actors = [ResNetTrainActor.remote(train_data, FLAGS.dataset,
|
|
num_gpus)
|
|
for _ in range(num_gpus)]
|
|
else:
|
|
train_actors = [ResNetTrainActor.remote(train_data, FLAGS.dataset, 0)]
|
|
test_actor = ResNetTestActor.remote(test_data, FLAGS.dataset,
|
|
FLAGS.eval_batch_count, FLAGS.eval_dir)
|
|
print("The log files for tensorboard are stored at ip {}."
|
|
.format(ray.get(test_actor.get_ip_addr.remote())))
|
|
step = 0
|
|
weight_id = train_actors[0].get_weights.remote()
|
|
acc_id = test_actor.accuracy.remote(weight_id, step)
|
|
# Correction for dividing the weights by the number of gpus.
|
|
if num_gpus == 0:
|
|
num_gpus = 1
|
|
print("Starting training loop. Use Ctrl-C to exit.")
|
|
try:
|
|
while True:
|
|
all_weights = ray.get([actor.compute_steps.remote(weight_id)
|
|
for actor in train_actors])
|
|
mean_weights = {k: (sum(weights[k] for weights in all_weights) /
|
|
num_gpus)
|
|
for k in all_weights[0]}
|
|
weight_id = ray.put(mean_weights)
|
|
step += 10
|
|
if step % 200 == 0:
|
|
# Retrieves the previously computed accuracy and launches a new
|
|
# testing task with the current weights every 200 steps.
|
|
acc = ray.get(acc_id)
|
|
acc_id = test_actor.accuracy.remote(weight_id, step)
|
|
print("Step {}: {:.6f}".format(step - 200, acc))
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train()
|