No description
Find a file
2016-09-25 23:08:27 -07:00
cmake/Modules help cmake find right python interpreter on mac (#251) 2016-07-11 12:16:10 -07:00
data load imagenet 2016-06-10 17:25:55 -07:00
doc Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
docker Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
examples Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
include/ray Remove unused code. (#418) 2016-09-08 11:36:17 -07:00
lib/python Suppress exceptions in the error logging thread when program exits. (#432) 2016-09-15 13:48:23 -07:00
protos Changed ray.select() to ray.wait() and its functionality (#426) 2016-09-14 17:14:11 -07:00
scripts Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
src Remove unused serialize/deserialize code in raylib. (#434) 2016-09-15 13:46:38 -07:00
test Small fix in test. (#441) 2016-09-25 23:08:27 -07:00
thirdparty Add a recursion depth for serialization to prevent infinite loops. (#440) 2016-09-19 17:17:42 -07:00
vsprojects Update Windows support (#317) 2016-07-28 13:11:13 -07:00
.editorconfig Update Windows support (#317) 2016-07-28 13:11:13 -07:00
.gitignore ignoring build output and example datasets (#360) 2016-08-09 11:30:33 -07:00
.gitmodules Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
.travis.yml Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
build-docker.sh Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
build.sh Write computation graph to file 2016-06-27 12:20:30 -07:00
CMakeLists.txt Add hiredis to build (#395) 2016-09-01 20:15:00 -07:00
install-dependencies.sh Make sure that pip installation of cloudpickle works. (#417) 2016-09-07 18:50:08 -07:00
LICENSE switching to BSD (#90) 2016-06-06 12:07:36 -07:00
pylintrc adding pylint (#233) 2016-07-08 12:39:11 -07:00
Ray.sln Update Windows support (#317) 2016-07-28 13:11:13 -07:00
README.md Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
setup-env.sh Export GRPC environment variable in Python instead of in setup-env.sh (#382) 2016-08-18 15:39:19 -07:00
setup.sh remove installation of dependencies from setup script (#239) 2016-07-08 20:03:21 -07:00

Ray

Build Status

Ray is an experimental distributed extension of Python. It is under development and not ready to be used.

The goal of Ray is to make it easy to write machine learning applications that run on a cluster while providing the development and debugging experience of working on a single machine.

Before jumping into the details, here's a simple Python example for doing a Monte Carlo estimation of pi (using multiple cores or potentially multiple machines).

import ray
import numpy as np

# Start a scheduler, an object store, and some workers.
ray.init(start_ray_local=True, num_workers=10)

# Define a remote function for estimating pi.
@ray.remote
def estimate_pi(n):
  x = np.random.uniform(size=n)
  y = np.random.uniform(size=n)
  return 4 * np.mean(x ** 2 + y ** 2 < 1)

# Launch 10 tasks, each of which estimates pi.
result_ids = []
for _ in range(10):
  result_ids.append(estimate_pi.remote(100))

# Fetch the results of the tasks and print their average.
estimate = np.mean(ray.get(result_ids))
print "Pi is approximately {}.".format(estimate)

Within the for loop, each call to estimate_pi.remote(100) sends a message to the scheduler asking it to schedule the task of running estimate_pi with the argument 100. This call returns right away without waiting for the actual estimation of pi to take place. Instead of returning a float, it returns an object ID, which represents the eventual output of the computation (this is a similar to a Future).

The call to ray.get(result_id) takes an object ID and returns the actual estimate of pi (waiting until the computation has finished if necessary).

Next Steps

Example Applications