mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* Initial conversion * Further changes * fixes * some changes * Fixes * Added data pipeline * Added updates to cifar * Currently borken need sep pr * Added test for retriving variables from an optimizer * Removed FlAG ref in environment variables * Added comments to test * Addressed comments * Added updates * Made further changes for tfutils * Fixed finalized bug * Removed ipython * Added accuracy printing * Temp commit * added fixes * changes * Added writing to file * Fixes for gpus * Cleaned up code * Temp commit * Gpu support fully implemented * Updated to use num_gpus for actors * Finished testing gpus implementation * Changed to be more in line with origin implementation * Updated test to use actors * Added support for cpu only systems * Now works with no cpus * Minor changes and some documentation.
106 lines
3.9 KiB
Python
106 lines
3.9 KiB
Python
"""CIFAR dataset input module, with the majority taken from
|
|
https://github.com/tensorflow/models/tree/master/resnet.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
def build_data(data_path, size):
|
|
image_size = 32
|
|
label_bytes = 1
|
|
label_offset = 0
|
|
num_classes = 10
|
|
|
|
depth = 3
|
|
image_bytes = image_size * image_size * depth
|
|
record_bytes = label_bytes + label_offset + image_bytes
|
|
|
|
data_files = tf.gfile.Glob(data_path)
|
|
file_queue = tf.train.string_input_producer(data_files, shuffle=True)
|
|
# Read examples from files in the filename queue.
|
|
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
|
|
_, value = reader.read(file_queue)
|
|
|
|
# Convert these examples to dense labels and processed images.
|
|
record = tf.reshape(tf.decode_raw(value, tf.uint8), [record_bytes])
|
|
label = tf.cast(tf.slice(record, [label_offset], [label_bytes]), tf.int32)
|
|
# Convert from string to [depth * height * width] to [depth, height, width].
|
|
depth_major = tf.reshape(tf.slice(record, [label_bytes], [image_bytes]),
|
|
[depth, image_size, image_size])
|
|
# Convert from [depth, height, width] to [height, width, depth].
|
|
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
|
|
queue = tf.train.shuffle_batch([image, label], size, size, 0, num_threads=16)
|
|
return queue
|
|
|
|
def build_input(data, batch_size, train):
|
|
"""Build CIFAR image and labels.
|
|
|
|
Args:
|
|
data_path: Filename for cifar10 data.
|
|
batch_size: Input batch size.
|
|
train: True if we are training and false if we are testing.
|
|
|
|
Returns:
|
|
images: Batches of images of size [batch_size, image_size, image_size, 3].
|
|
labels: Batches of labels of size [batch_size, num_classes].
|
|
|
|
Raises:
|
|
ValueError: When the specified dataset is not supported.
|
|
"""
|
|
images_constant = tf.constant(data[0])
|
|
labels_constant = tf.constant(data[1])
|
|
image_size = 32
|
|
depth = 3
|
|
num_classes = 10
|
|
image, label = tf.train.slice_input_producer([images_constant, labels_constant])
|
|
if train:
|
|
image = tf.image.resize_image_with_crop_or_pad(
|
|
image, image_size+4, image_size+4)
|
|
image = tf.random_crop(image, [image_size, image_size, 3])
|
|
image = tf.image.random_flip_left_right(image)
|
|
# Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
|
|
# image = tf.image.random_brightness(image, max_delta=63. / 255.)
|
|
# image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
|
|
# image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
|
|
image = tf.image.per_image_standardization(image)
|
|
example_queue = tf.RandomShuffleQueue(
|
|
capacity=16 * batch_size,
|
|
min_after_dequeue=8 * batch_size,
|
|
dtypes=[tf.float32, tf.int32],
|
|
shapes=[[image_size, image_size, depth], [1]])
|
|
num_threads = 16
|
|
else:
|
|
image = tf.image.resize_image_with_crop_or_pad(
|
|
image, image_size, image_size)
|
|
image = tf.image.per_image_standardization(image)
|
|
example_queue = tf.FIFOQueue(
|
|
3 * batch_size,
|
|
dtypes=[tf.float32, tf.int32],
|
|
shapes=[[image_size, image_size, depth], [1]])
|
|
num_threads = 1
|
|
|
|
|
|
example_enqueue_op = example_queue.enqueue([image, label])
|
|
tf.train.add_queue_runner(tf.train.queue_runner.QueueRunner(
|
|
example_queue, [example_enqueue_op] * num_threads))
|
|
|
|
# Read 'batch' labels + images from the example queue.
|
|
images, labels = example_queue.dequeue_many(batch_size)
|
|
labels = tf.reshape(labels, [batch_size, 1])
|
|
indices = tf.reshape(tf.range(0, batch_size, 1), [batch_size, 1])
|
|
labels = tf.sparse_to_dense(
|
|
tf.concat([indices, labels], 1),
|
|
[batch_size, num_classes], 1.0, 0.0)
|
|
|
|
assert len(images.get_shape()) == 4
|
|
assert images.get_shape()[0] == batch_size
|
|
assert images.get_shape()[-1] == 3
|
|
assert len(labels.get_shape()) == 2
|
|
assert labels.get_shape()[0] == batch_size
|
|
assert labels.get_shape()[1] == num_classes
|
|
|
|
return images, labels
|