ray/lib/orchpy/arrays/dist/core.py
2016-03-23 18:38:42 -07:00

204 lines
7.3 KiB
Python

from typing import List
import numpy as np
import arrays.single as single
import orchpy as op
__all__ = ["BLOCK_SIZE", "DistArray", "assemble", "zeros", "ones", "copy",
"eye", "triu", "tril", "blockwise_dot", "dot", "block_column", "block_row"]
BLOCK_SIZE = 10
class DistArray(object):
def construct(self, shape, objrefs):
self.shape = shape
self.objrefs = objrefs
self.ndim = len(shape)
self.num_blocks = [int(np.ceil(1.0 * a / BLOCK_SIZE)) for a in self.shape]
if self.num_blocks != list(self.objrefs.shape):
raise Exception("The fields `num_blocks` and `objrefs` are inconsistent, `num_blocks` is {} and `objrefs` has shape {}".format(self.num_blocks, list(self.objrefs.shape)))
def deserialize(self, primitives):
(shape, objrefs) = primitives
self.construct(shape, objrefs)
def serialize(self):
return (self.shape, self.objrefs)
def __init__(self):
self.shape = None
self.objrefs = None
@staticmethod
def compute_block_lower(index, shape):
# TODO(rkn): Check that the entries of index are in the correct range.
# TODO(rkn): Check that len(index) == len(shape).
return [elem * BLOCK_SIZE for elem in index]
@staticmethod
def compute_block_upper(index, shape):
# TODO(rkn): Check that the entries of index are in the correct range.
# TODO(rkn): Check that len(index) == len(shape).
upper = []
for i in range(len(shape)):
upper.append(min((index[i] + 1) * BLOCK_SIZE, shape[i]))
return upper
@staticmethod
def compute_block_shape(index, shape):
lower = DistArray.compute_block_lower(index, shape)
upper = DistArray.compute_block_upper(index, shape)
return [u - l for (l, u) in zip(lower, upper)]
@staticmethod
def compute_num_blocks(shape):
return [int(np.ceil(1.0 * a / BLOCK_SIZE)) for a in shape]
def assemble(self):
"""Assemble an array on this node from a distributed array object reference."""
first_block = op.pull(self.objrefs[(0,) * self.ndim])
dtype = first_block.dtype
result = np.zeros(self.shape, dtype=dtype)
for index in np.ndindex(*self.num_blocks):
lower = DistArray.compute_block_lower(index, self.shape)
upper = DistArray.compute_block_upper(index, self.shape)
result[[slice(l, u) for (l, u) in zip(lower, upper)]] = op.pull(self.objrefs[index])
return result
def __getitem__(self, sliced):
# TODO(rkn): fix this, this is just a placeholder that should work but is inefficient
a = self.assemble()
return a[sliced]
@op.distributed([DistArray], [np.ndarray])
def assemble(a):
return a.assemble()
@op.distributed([List[int], str], [DistArray])
def zeros(shape, dtype_name):
num_blocks = DistArray.compute_num_blocks(shape)
objrefs = np.empty(num_blocks, dtype=object)
for index in np.ndindex(*num_blocks):
objrefs[index] = single.zeros(DistArray.compute_block_shape(index, shape), dtype_name)
result = DistArray()
result.construct(shape, objrefs)
return result
@op.distributed([List[int], str], [DistArray])
def ones(shape, dtype_name):
num_blocks = DistArray.compute_num_blocks(shape)
objrefs = np.empty(num_blocks, dtype=object)
for index in np.ndindex(*num_blocks):
objrefs[index] = single.ones(DistArray.compute_block_shape(index, shape), dtype_name)
result = DistArray()
result.construct(shape, objrefs)
return result
@op.distributed([DistArray], [DistArray])
def copy(a):
num_blocks = DistArray.compute_num_blocks(a.shape)
objrefs = np.empty(num_blocks, dtype=object)
for index in np.ndindex(*num_blocks):
objrefs[index] = single.copy(a.objrefs[index])
result = DistArray()
result.construct(a.shape, objrefs)
return result
@op.distributed([int, str], [DistArray])
def eye(dim, dtype_name):
shape = [dim, dim]
num_blocks = DistArray.compute_num_blocks(shape)
objrefs = np.empty(num_blocks, dtype=object)
for (i, j) in np.ndindex(*num_blocks):
if i == j:
objrefs[i, j] = single.eye(DistArray.compute_block_shape([i, j], shape)[0], dtype_name)
else:
objrefs[i, j] = single.zeros(DistArray.compute_block_shape([i, j], shape), dtype_name)
result = DistArray()
result.construct(shape, objrefs)
return result
@op.distributed([DistArray], [DistArray])
def triu(a):
if a.ndim != 2:
raise Exception("Input must have 2 dimensions, but a.ndim is " + str(a.ndim))
objrefs = np.empty(a.num_blocks, dtype=object)
for i in range(a.num_blocks[0]):
for j in range(a.num_blocks[1]):
if i < j:
objrefs[i, j] = single.copy(a.objrefs[i, j])
elif i == j:
objrefs[i, j] = single.triu(a.objrefs[i, j])
else:
objrefs[i, j] = single.zeros_like(a.objrefs[i, j])
result = DistArray()
result.construct(a.shape, objrefs)
return result
@op.distributed([DistArray], [DistArray])
def tril(a):
if a.ndim != 2:
raise Exception("Input must have 2 dimensions, but a.ndim is " + str(a.ndim))
objrefs = np.empty(a.num_blocks, dtype=object)
for i in range(a.num_blocks[0]):
for j in range(a.num_blocks[1]):
if i > j:
objrefs[i, j] = single.copy(a.objrefs[i, j])
elif i == j:
objrefs[i, j] = single.tril(a.objrefs[i, j])
else:
objrefs[i, j] = single.zeros_like(a.objrefs[i, j])
result = DistArray()
result.construct(a.shape, objrefs)
return result
@op.distributed([np.ndarray, None], [np.ndarray])
def blockwise_dot(*matrices):
n = len(matrices)
if n % 2 != 0:
raise Exception("blockwise_dot expects an even number of arguments, but len(matrices) is {}.".format(n))
shape = (matrices[0].shape[0], matrices[n / 2].shape[1])
result = np.zeros(shape)
for i in range(n / 2):
result += np.dot(matrices[i], matrices[n / 2 + i])
return result
@op.distributed([DistArray, DistArray], [DistArray])
def dot(a, b):
if a.ndim != 2:
raise Exception("dot expects its arguments to be 2-dimensional, but a.ndim = {}.".format(a.ndim))
if b.ndim != 2:
raise Exception("dot expects its arguments to be 2-dimensional, but b.ndim = {}.".format(b.ndim))
if a.shape[1] != b.shape[0]:
raise Exception("dot expects a.shape[1] to equal b.shape[0], but a.shape = {} and b.shape = {}.".format(a.shape, b.shape))
shape = [a.shape[0], b.shape[1]]
num_blocks = DistArray.compute_num_blocks(shape)
objrefs = np.empty(num_blocks, dtype=object)
for i in range(num_blocks[0]):
for j in range(num_blocks[1]):
args = list(a.objrefs[i, :]) + list(b.objrefs[:, j])
objrefs[i, j] = blockwise_dot(*args)
result = DistArray()
result.construct(shape, objrefs)
return result
# This is not in numpy, should we expose this?
@op.distributed([DistArray], [DistArray])
def block_column(a, col):
if a.ndim != 2:
raise Exception("block_column expects its argument to be 2-dimensional, but a.ndim = {}, a.shape = {}.".format(a.ndim, a.shape))
top_block_shape = DistArray.compute_block_shape([0, col])
shape = [a.shape[0], top_block_shape[1]]
result = DistArray()
result.construct(shape, a.objrefs[:, col])
return result
# This is not in numpy, should we expose this?
@op.distributed([DistArray], [DistArray])
def block_row(a, row):
if a.ndim != 2:
raise Exception("block_row expects its argument to be 2-dimensional, but a.ndim = {}, a.shape = {}.".format(a.ndim, a.shape))
left_block_shape = DistArray.compute_block_shape([row, 0])
shape = [left_block_shape[0], a.shape[1]]
result = DistArray()
result.construct(shape, a.objrefs[row, :])
return result