ray/test/tensorflow_test.py
Robert Nishihara 515da7721a Change ray.worker.cleanup -> ray.shutdown and improve API documentation. (#2374)
* Change ray.worker.cleanup -> ray.shutdown and improve API documentation.

* Deprecate ray.worker.cleanup() gracefully.

* Fix linting
2018-07-12 12:00:00 -07:00

270 lines
9.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from numpy.testing import assert_almost_equal
import tensorflow as tf
import unittest
import ray
def make_linear_network(w_name=None, b_name=None):
# Define the inputs.
x_data = tf.placeholder(tf.float32, shape=[100])
y_data = tf.placeholder(tf.float32, shape=[100])
# Define the weights and computation.
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name=w_name)
b = tf.Variable(tf.zeros([1]), name=b_name)
y = w * x_data + b
# Return the loss and weight initializer.
return (tf.reduce_mean(tf.square(y - y_data)),
tf.global_variables_initializer(), x_data, y_data)
class LossActor(object):
def __init__(self, use_loss=True):
# Uses a separate graph for each network.
with tf.Graph().as_default():
# Create the network.
var = [tf.Variable(1)]
loss, init, _, _ = make_linear_network()
sess = tf.Session()
# Additional code for setting and getting the weights.
weights = ray.experimental.TensorFlowVariables(
loss if use_loss else None, sess, input_variables=var)
# Return all of the data needed to use the network.
self.values = [weights, init, sess]
sess.run(init)
def set_and_get_weights(self, weights):
self.values[0].set_weights(weights)
return self.values[0].get_weights()
def get_weights(self):
return self.values[0].get_weights()
class NetActor(object):
def __init__(self):
# Uses a separate graph for each network.
with tf.Graph().as_default():
# Create the network.
loss, init, _, _ = make_linear_network()
sess = tf.Session()
# Additional code for setting and getting the weights.
variables = ray.experimental.TensorFlowVariables(loss, sess)
# Return all of the data needed to use the network.
self.values = [variables, init, sess]
sess.run(init)
def set_and_get_weights(self, weights):
self.values[0].set_weights(weights)
return self.values[0].get_weights()
def get_weights(self):
return self.values[0].get_weights()
class TrainActor(object):
def __init__(self):
# Almost the same as above, but now returns the placeholders and
# gradient.
with tf.Graph().as_default():
loss, init, x_data, y_data = make_linear_network()
sess = tf.Session()
variables = ray.experimental.TensorFlowVariables(loss, sess)
optimizer = tf.train.GradientDescentOptimizer(0.9)
grads = optimizer.compute_gradients(loss)
train = optimizer.apply_gradients(grads)
self.values = [
loss, variables, init, sess, grads, train, [x_data, y_data]
]
sess.run(init)
def training_step(self, weights):
_, variables, _, sess, grads, _, placeholders = self.values
variables.set_weights(weights)
return sess.run(
[grad[0] for grad in grads],
feed_dict=dict(zip(placeholders, [[1] * 100, [2] * 100])))
def get_weights(self):
return self.values[1].get_weights()
class TensorFlowTest(unittest.TestCase):
def tearDown(self):
ray.shutdown()
def testTensorFlowVariables(self):
ray.init(num_workers=2)
sess = tf.Session()
loss, init, _, _ = make_linear_network()
sess.run(init)
variables = ray.experimental.TensorFlowVariables(loss, sess)
weights = variables.get_weights()
for (name, val) in weights.items():
weights[name] += 1.0
variables.set_weights(weights)
self.assertEqual(weights, variables.get_weights())
loss2, init2, _, _ = make_linear_network("w", "b")
sess.run(init2)
variables2 = ray.experimental.TensorFlowVariables(loss2, sess)
weights2 = variables2.get_weights()
for (name, val) in weights2.items():
weights2[name] += 2.0
variables2.set_weights(weights2)
self.assertEqual(weights2, variables2.get_weights())
flat_weights = variables2.get_flat() + 2.0
variables2.set_flat(flat_weights)
assert_almost_equal(flat_weights, variables2.get_flat())
variables3 = ray.experimental.TensorFlowVariables([loss2])
self.assertEqual(variables3.sess, None)
sess = tf.Session()
variables3.set_session(sess)
self.assertEqual(variables3.sess, sess)
# Test that the variable names for the two different nets are not
# modified by TensorFlow to be unique (i.e., they should already
# be unique because of the variable prefix).
def testVariableNameCollision(self):
ray.init(num_workers=2)
net1 = NetActor()
net2 = NetActor()
# This is checking that the variable names of the two nets are the
# same, i.e., that the names in the weight dictionaries are the same.
net1.values[0].set_weights(net2.values[0].get_weights())
# Test that TensorFlowVariables can take in addition variables through
# input_variables arg and with no loss.
def testAdditionalVariablesNoLoss(self):
ray.init(num_workers=1)
net = LossActor(use_loss=False)
self.assertEqual(len(net.values[0].variables.items()), 1)
self.assertEqual(len(net.values[0].placeholders.items()), 1)
net.values[0].set_weights(net.values[0].get_weights())
# Test that TensorFlowVariables can take in addition variables through
# input_variables arg and with a loss.
def testAdditionalVariablesWithLoss(self):
ray.init(num_workers=1)
net = LossActor()
self.assertEqual(len(net.values[0].variables.items()), 3)
self.assertEqual(len(net.values[0].placeholders.items()), 3)
net.values[0].set_weights(net.values[0].get_weights())
# Test that different networks on the same worker are independent and
# we can get/set their weights without any interaction.
def testNetworksIndependent(self):
# Note we use only one worker to ensure that all of the remote
# functions run on the same worker.
ray.init(num_workers=1)
net1 = NetActor()
net2 = NetActor()
# Make sure the two networks have different weights. TODO(rkn): Note
# that equality comparisons of numpy arrays normally does not work.
# This only works because at the moment they have size 1.
weights1 = net1.get_weights()
weights2 = net2.get_weights()
self.assertNotEqual(weights1, weights2)
# Set the weights and get the weights, and make sure they are
# unchanged.
new_weights1 = net1.set_and_get_weights(weights1)
new_weights2 = net2.set_and_get_weights(weights2)
self.assertEqual(weights1, new_weights1)
self.assertEqual(weights2, new_weights2)
# Swap the weights.
new_weights1 = net2.set_and_get_weights(weights1)
new_weights2 = net1.set_and_get_weights(weights2)
self.assertEqual(weights1, new_weights1)
self.assertEqual(weights2, new_weights2)
# This test creates an additional network on the driver so that the
# tensorflow variables on the driver and the worker differ.
def testNetworkDriverWorkerIndependent(self):
ray.init(num_workers=1)
# Create a network on the driver locally.
sess1 = tf.Session()
loss1, init1, _, _ = make_linear_network()
ray.experimental.TensorFlowVariables(loss1, sess1)
sess1.run(init1)
net2 = ray.remote(NetActor).remote()
weights2 = ray.get(net2.get_weights.remote())
new_weights2 = ray.get(
net2.set_and_get_weights.remote(net2.get_weights.remote()))
self.assertEqual(weights2, new_weights2)
def testVariablesControlDependencies(self):
ray.init(num_workers=1)
# Creates a network and appends a momentum optimizer.
sess = tf.Session()
loss, init, _, _ = make_linear_network()
minimizer = tf.train.MomentumOptimizer(0.9, 0.9).minimize(loss)
net_vars = ray.experimental.TensorFlowVariables(minimizer, sess)
sess.run(init)
# Tests if all variables are properly retrieved, 2 variables and 2
# momentum variables.
self.assertEqual(len(net_vars.variables.items()), 4)
def testRemoteTrainingStep(self):
ray.init(num_workers=1)
net = ray.remote(TrainActor).remote()
ray.get(net.training_step.remote(net.get_weights.remote()))
def testRemoteTrainingLoss(self):
ray.init(num_workers=2)
net = ray.remote(TrainActor).remote()
net_values = TrainActor().values
loss, variables, _, sess, grads, train, placeholders = net_values
before_acc = sess.run(
loss, feed_dict=dict(zip(placeholders, [[2] * 100, [4] * 100])))
for _ in range(3):
gradients_list = ray.get([
net.training_step.remote(variables.get_weights())
for _ in range(2)
])
mean_grads = [
sum(gradients[i]
for gradients in gradients_list) / len(gradients_list)
for i in range(len(gradients_list[0]))
]
feed_dict = {
grad[0]: mean_grad
for (grad, mean_grad) in zip(grads, mean_grads)
}
sess.run(train, feed_dict=feed_dict)
after_acc = sess.run(
loss, feed_dict=dict(zip(placeholders, [[2] * 100, [4] * 100])))
self.assertTrue(before_acc < after_acc)
if __name__ == "__main__":
unittest.main(verbosity=2)