mirror of
https://github.com/vale981/ray
synced 2025-03-10 05:16:49 -04:00

A bunch of minor rllib fixes: pull in latest baselines atari wrapper changes (and use deepmind wrapper by default) move reward clipping to policy evaluator add a2c variant of a3c reduce vision network fc layer size to 256 units switch to 84x84 images doc tweaks print timesteps in tune status
326 lines
13 KiB
Bash
Executable file
326 lines
13 KiB
Bash
Executable file
#!/usr/bin/env bash
|
|
|
|
# Cause the script to exit if a single command fails.
|
|
set -e
|
|
|
|
# Show explicitly which commands are currently running.
|
|
set -x
|
|
|
|
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
|
|
|
|
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
|
|
echo "Using Docker image" $DOCKER_SHA
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v0 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v0 \
|
|
--run A2C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"simple_optimizer": false, "num_sgd_iter": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"simple_optimizer": true, "num_sgd_iter": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "use_gae": false}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run ES \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100, "num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pong-v0 \
|
|
--run ES \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100, "num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run APEX \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "timesteps_per_iteration": 1000, "gpu": false, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_sgd_iter": 10, "sgd_batchsize": 64, "timesteps_per_batch": 1000, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v4 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env MontezumaRevenge-v0 \
|
|
--run PPO \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run DQN \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1, "model": {"use_lstm": true, "max_seq_len": 100}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1, "num_envs_per_worker": 10}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pong-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env FrozenLake-v0 \
|
|
--run PG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"sample_batch_size": 500, "num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run IMPALA \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v0 \
|
|
--run IMPALA \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1, "model": {"use_lstm": true}}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env MountainCarContinuous-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
rllib train \
|
|
--env MountainCarContinuous-v0 \
|
|
--run DDPG \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env Pendulum-v0 \
|
|
--run APEX_DDPG \
|
|
--ray-num-cpus 8 \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "optimizer": {"num_replay_buffer_shards": 1}, "learning_starts": 100, "min_iter_time_s": 1}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
sh /ray/test/jenkins_tests/multi_node_tests/test_rllib_eval.sh
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_checkpoint_restore.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_policy_evaluator.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_serving_env.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_lstm.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_multi_agent_env.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/test/test_supported_spaces.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_ray.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/pbt_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/hyperband_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/async_hyperband_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_ray_hyperband.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_async_hyperband.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/hyperopt_example.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/tune/examples/tune_mnist_keras.py \
|
|
--smoke-test
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_mountaincar.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_pendulum.py
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/multiagent_cartpole.py --num-iters=2
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/examples/multiagent_two_trainers.py --num-iters=2
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env PongDeterministic-v4 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "use_pytorch": true, "model": {"use_lstm": false, "grayscale": true, "zero_mean": false, "dim": 84, "channel_major": true}, "preprocessor_pref": "rllib"}'
|
|
|
|
docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \
|
|
python /ray/python/ray/rllib/train.py \
|
|
--env CartPole-v1 \
|
|
--run A3C \
|
|
--stop '{"training_iteration": 2}' \
|
|
--config '{"num_workers": 2, "use_pytorch": true}'
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=10 \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=5 \
|
|
--num-gpus=0,1,2,3,4 \
|
|
--num-drivers=7 \
|
|
--driver-locations=0,1,0,1,2,3,4 \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=5 \
|
|
--num-redis-shards=2 \
|
|
--num-gpus=0,0,5,6,50 \
|
|
--num-drivers=100 \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
|
|
|
|
python3 $ROOT_DIR/multi_node_docker_test.py \
|
|
--docker-image=$DOCKER_SHA \
|
|
--num-nodes=1 \
|
|
--mem-size=60G \
|
|
--shm-size=60G \
|
|
--use-raylet \
|
|
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py
|