ray/rllib/agents/marwil/marwil_torch_policy.py

103 lines
3.7 KiB
Python

import ray
from ray.rllib.agents.marwil.marwil_tf_policy import postprocess_advantages
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_ops import apply_grad_clipping, explained_variance
torch, _ = try_import_torch()
class ValueNetworkMixin:
def __init__(self, obs_space, action_space, config):
# Input dict is provided to us automatically via the Model's
# requirements. It's a single-timestep (last one in trajectory)
# input_dict.
if config["_use_trajectory_view_api"]:
def value(**input_dict):
input_dict = self._lazy_tensor_dict(input_dict)
model_out, _ = self.model.from_batch(
input_dict, is_training=False)
# [0] = remove the batch dim.
return self.model.value_function()[0]
else:
def value(ob, prev_action, prev_reward, *state):
model_out, _ = self.model({
SampleBatch.CUR_OBS: torch.Tensor([ob]).to(self.device),
SampleBatch.PREV_ACTIONS: torch.Tensor([prev_action]).to(
self.device),
SampleBatch.PREV_REWARDS: torch.Tensor([prev_reward]).to(
self.device),
"is_training": False,
}, [torch.Tensor([s]).to(self.device) for s in state],
torch.Tensor([1]).to(self.device))
return self.model.value_function()[0]
self._value = value
def marwil_loss(policy, model, dist_class, train_batch):
model_out, _ = model.from_batch(train_batch)
action_dist = dist_class(model_out, model)
state_values = model.value_function()
advantages = train_batch[Postprocessing.ADVANTAGES]
actions = train_batch[SampleBatch.ACTIONS]
# Advantage estimation.
adv = advantages - state_values
adv_squared = torch.mean(torch.pow(adv, 2.0))
# Value loss.
policy.v_loss = 0.5 * adv_squared
# Policy loss.
# Update averaged advantage norm.
policy.ma_adv_norm.add_(1e-6 * (adv_squared - policy.ma_adv_norm))
# Exponentially weighted advantages.
exp_advs = torch.exp(policy.config["beta"] *
(adv / (1e-8 + torch.pow(policy.ma_adv_norm, 0.5))))
# log\pi_\theta(a|s)
logprobs = action_dist.logp(actions)
policy.p_loss = -1.0 * torch.mean(exp_advs.detach() * logprobs)
# Combine both losses.
policy.total_loss = policy.p_loss + policy.config["vf_coeff"] * \
policy.v_loss
explained_var = explained_variance(advantages, state_values)
policy.explained_variance = torch.mean(explained_var)
return policy.total_loss
def stats(policy, train_batch):
return {
"policy_loss": policy.p_loss,
"vf_loss": policy.v_loss,
"total_loss": policy.total_loss,
"vf_explained_var": policy.explained_variance,
}
def setup_mixins(policy, obs_space, action_space, config):
# Create a var.
policy.ma_adv_norm = torch.tensor(
[100.0], dtype=torch.float32, requires_grad=False).to(policy.device)
# Setup Value branch of our NN.
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
MARWILTorchPolicy = build_policy_class(
name="MARWILTorchPolicy",
framework="torch",
loss_fn=marwil_loss,
get_default_config=lambda: ray.rllib.agents.marwil.marwil.DEFAULT_CONFIG,
stats_fn=stats,
postprocess_fn=postprocess_advantages,
extra_grad_process_fn=apply_grad_clipping,
before_loss_init=setup_mixins,
mixins=[ValueNetworkMixin])