ray/README.rst

324 lines
11 KiB
ReStructuredText

.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://readthedocs.org/projects/ray/badge/?version=master
:target: http://docs.ray.io/en/master/?badge=master
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
:target: https://forms.gle/9TSdDYUgxYs8SA9e8
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
:target: https://discuss.ray.io/
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
:target: https://twitter.com/raydistributed
|
**Ray provides a simple, universal API for building distributed applications.**
Ray is packaged with the following libraries for accelerating machine learning workloads:
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `RaySGD <https://docs.ray.io/en/master/raysgd/raysgd.html>`__: Distributed Training Wrappers
- `Serve`_: Scalable and Programmable Serving
- `Datasets`_: Flexible Distributed Data Loading (beta)
- `Workflows`_: Fast, Durable Application Flows (alpha)
There are also many `community integrations <https://docs.ray.io/en/master/ray-libraries.html>`_ with Ray, including `Dask`_, `MARS`_, `Modin`_, `Horovod`_, `Hugging Face`_, `Scikit-learn`_, and others. Check out the `full list of Ray distributed libraries here <https://docs.ray.io/en/master/ray-libraries.html>`_.
Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page <https://docs.ray.io/en/master/installation.html>`__.
.. _`Modin`: https://github.com/modin-project/modin
.. _`Hugging Face`: https://huggingface.co/transformers/main_classes/trainer.html#transformers.Trainer.hyperparameter_search
.. _`MARS`: https://docs.ray.io/en/master/mars-on-ray.html
.. _`Dask`: https://docs.ray.io/en/master/dask-on-ray.html
.. _`Horovod`: https://horovod.readthedocs.io/en/stable/ray_include.html
.. _`Scikit-learn`: joblib.html
.. _`Datasets`: https://docs.ray.io/en/master/data/dataset.html
.. _`Workflows`: https://docs.ray.io/en/master/workflows/concepts.html
Quick Start
-----------
Execute Python functions in parallel.
.. code-block:: python
import ray
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))
To use Ray's actor model:
.. code-block:: python
import ray
ray.init()
@ray.remote
class Counter(object):
def __init__(self):
self.n = 0
def increment(self):
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures))
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
``ray submit [CLUSTER.YAML] example.py --start``
Read more about `launching clusters <https://docs.ray.io/en/master/cluster/index.html>`_.
Tune Quick Start
----------------
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/tune-wide.png
`Tune`_ is a library for hyperparameter tuning at any scale.
- Launch a multi-node distributed hyperparameter sweep in less than 10 lines of code.
- Supports any deep learning framework, including PyTorch, `PyTorch Lightning <https://github.com/williamFalcon/pytorch-lightning>`_, TensorFlow, and Keras.
- Visualize results with `TensorBoard <https://www.tensorflow.org/tensorboard>`__.
- Choose among scalable SOTA algorithms such as `Population Based Training (PBT)`_, `Vizier's Median Stopping Rule`_, `HyperBand/ASHA`_.
- Tune integrates with many optimization libraries such as `Facebook Ax <http://ax.dev>`_, `HyperOpt <https://github.com/hyperopt/hyperopt>`_, and `Bayesian Optimization <https://github.com/fmfn/BayesianOptimization>`_ and enables you to scale them transparently.
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install "ray[tune]"
This example runs a parallel grid search to optimize an example objective function.
.. code-block:: python
from ray import tune
def objective(step, alpha, beta):
return (0.1 + alpha * step / 100)**(-1) + beta * 0.1
def training_function(config):
# Hyperparameters
alpha, beta = config["alpha"], config["beta"]
for step in range(10):
# Iterative training function - can be any arbitrary training procedure.
intermediate_score = objective(step, alpha, beta)
# Feed the score back back to Tune.
tune.report(mean_loss=intermediate_score)
analysis = tune.run(
training_function,
config={
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
"beta": tune.choice([1, 2, 3])
})
print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
# Get a dataframe for analyzing trial results.
df = analysis.results_df
If TensorBoard is installed, automatically visualize all trial results:
.. code-block:: bash
tensorboard --logdir ~/ray_results
.. _`Tune`: https://docs.ray.io/en/master/tune.html
.. _`Population Based Training (PBT)`: https://docs.ray.io/en/master/tune-schedulers.html#population-based-training-pbt
.. _`Vizier's Median Stopping Rule`: https://docs.ray.io/en/master/tune-schedulers.html#median-stopping-rule
.. _`HyperBand/ASHA`: https://docs.ray.io/en/master/tune-schedulers.html#asynchronous-hyperband
RLlib Quick Start
-----------------
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/rllib-wide.jpg
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
.. code-block:: bash
pip install tensorflow # or tensorflow-gpu
pip install "ray[rllib]"
.. code-block:: python
import gym
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
tune.run(
"PPO",
config={
"env": SimpleCorridor,
"num_workers": 4,
"env_config": {"corridor_length": 5}})
.. _`RLlib`: https://docs.ray.io/en/master/rllib.html
Ray Serve Quick Start
---------------------
.. image:: https://raw.githubusercontent.com/ray-project/ray/master/doc/source/serve/logo.svg
:width: 400
`Ray Serve`_ is a scalable model-serving library built on Ray. It is:
- Framework Agnostic: Use the same toolkit to serve everything from deep
learning models built with frameworks like PyTorch or Tensorflow & Keras
to Scikit-Learn models or arbitrary business logic.
- Python First: Configure your model serving declaratively in pure Python,
without needing YAMLs or JSON configs.
- Performance Oriented: Turn on batching, pipelining, and GPU acceleration to
increase the throughput of your model.
- Composition Native: Allow you to create "model pipelines" by composing multiple
models together to drive a single prediction.
- Horizontally Scalable: Serve can linearly scale as you add more machines. Enable
your ML-powered service to handle growing traffic.
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install scikit-learn
$ pip install "ray[serve]"
This example runs serves a scikit-learn gradient boosting classifier.
.. code-block:: python
import pickle
import requests
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from ray import serve
serve.start()
# Train model.
iris_dataset = load_iris()
model = GradientBoostingClassifier()
model.fit(iris_dataset["data"], iris_dataset["target"])
@serve.deployment(route_prefix="/iris")
class BoostingModel:
def __init__(self, model):
self.model = model
self.label_list = iris_dataset["target_names"].tolist()
async def __call__(self, request):
payload = await request.json()["vector"]
print(f"Received flask request with data {payload}")
prediction = self.model.predict([payload])[0]
human_name = self.label_list[prediction]
return {"result": human_name}
# Deploy model.
BoostingModel.deploy(model)
# Query it!
sample_request_input = {"vector": [1.2, 1.0, 1.1, 0.9]}
response = requests.get("http://localhost:8000/iris", json=sample_request_input)
print(response.text)
# Result:
# {
# "result": "versicolor"
# }
.. _`Ray Serve`: https://docs.ray.io/en/master/serve/index.html
More Information
----------------
- `Documentation`_
- `Tutorial`_
- `Blog`_
- `Ray 1.0 Architecture whitepaper`_ **(new)**
- `Ray Design Patterns`_ **(new)**
- `RLlib paper`_
- `RLlib flow paper`_
- `Tune paper`_
*Older documents:*
- `Ray paper`_
- `Ray HotOS paper`_
.. _`Documentation`: http://docs.ray.io/en/master/index.html
.. _`Tutorial`: https://github.com/ray-project/tutorial
.. _`Blog`: https://medium.com/distributed-computing-with-ray
.. _`Ray 1.0 Architecture whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Design Patterns`: https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`RLlib flow paper`: https://arxiv.org/abs/2011.12719
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
- `Forum`_: For discussions about development, questions about usage, and feature requests.
- `GitHub Issues`_: For reporting bugs.
- `Twitter`_: Follow updates on Twitter.
- `Slack`_: Join our Slack channel.
- `Meetup Group`_: Join our meetup group.
- `StackOverflow`_: For questions about how to use Ray.
.. _`Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://twitter.com/raydistributed
.. _`Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8