ray/rllib/examples/mobilenet_v2_with_lstm.py

70 lines
2.3 KiB
Python

# Explains/tests Issues:
# https://github.com/ray-project/ray/issues/6928
# https://github.com/ray-project/ray/issues/6732
import argparse
from gym.spaces import Discrete, Box
import numpy as np
import os
from ray import tune
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.examples.models.mobilenet_v2_with_lstm_models import \
MobileV2PlusRNNModel, TorchMobileV2PlusRNNModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
tf1, tf, tfv = try_import_tf()
cnn_shape = (4, 4, 3)
# The torch version of MobileNetV2 does channels first.
cnn_shape_torch = (3, 224, 224)
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-reward", type=float, default=0.0)
parser.add_argument("--stop-timesteps", type=int, default=100000)
if __name__ == "__main__":
args = parser.parse_args()
# Register our custom model.
ModelCatalog.register_custom_model(
"my_model", TorchMobileV2PlusRNNModel
if args.torch else MobileV2PlusRNNModel)
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
# Configure our Trainer.
config = {
"env": RandomEnv,
"framework": "torch" if args.torch else "tf",
"model": {
"custom_model": "my_model",
# Extra config passed to the custom model's c'tor as kwargs.
"custom_model_config": {
"cnn_shape": cnn_shape_torch if args.torch else cnn_shape,
},
"max_seq_len": 20,
"vf_share_layers": True,
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 0, # no parallelism
"env_config": {
"action_space": Discrete(2),
# Test a simple Image observation space.
"observation_space": Box(
0.0,
1.0,
shape=cnn_shape_torch if args.torch else cnn_shape,
dtype=np.float32)
},
}
tune.run("PPO", config=config, stop=stop, verbose=1)