ray/rllib/agents/dqn/dqn_policy.py

477 lines
19 KiB
Python

from gym.spaces import Discrete
import numpy as np
from scipy.stats import entropy
import ray
from ray.rllib.agents.dqn.distributional_q_model import DistributionalQModel
from ray.rllib.agents.dqn.simple_q_policy import TargetNetworkMixin, \
ParameterNoiseMixin
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.models import ModelCatalog
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.policy.tf_policy import LearningRateSchedule
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils.tf_ops import huber_loss, reduce_mean_ignore_inf, \
minimize_and_clip
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.tf_ops import make_tf_callable
tf = try_import_tf()
Q_SCOPE = "q_func"
Q_TARGET_SCOPE = "target_q_func"
# Importance sampling weights for prioritized replay
PRIO_WEIGHTS = "weights"
class QLoss:
def __init__(self,
q_t_selected,
q_logits_t_selected,
q_tp1_best,
q_dist_tp1_best,
importance_weights,
rewards,
done_mask,
gamma=0.99,
n_step=1,
num_atoms=1,
v_min=-10.0,
v_max=10.0):
if num_atoms > 1:
# Distributional Q-learning which corresponds to an entropy loss
z = tf.range(num_atoms, dtype=tf.float32)
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
r_tau = tf.expand_dims(
rewards, -1) + gamma**n_step * tf.expand_dims(
1.0 - done_mask, -1) * tf.expand_dims(z, 0)
r_tau = tf.clip_by_value(r_tau, v_min, v_max)
b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
lb = tf.floor(b)
ub = tf.ceil(b)
# indispensable judgement which is missed in most implementations
# when b happens to be an integer, lb == ub, so pr_j(s', a*) will
# be discarded because (ub-b) == (b-lb) == 0
floor_equal_ceil = tf.to_float(tf.less(ub - lb, 0.5))
l_project = tf.one_hot(
tf.cast(lb, dtype=tf.int32),
num_atoms) # (batch_size, num_atoms, num_atoms)
u_project = tf.one_hot(
tf.cast(ub, dtype=tf.int32),
num_atoms) # (batch_size, num_atoms, num_atoms)
ml_delta = q_dist_tp1_best * (ub - b + floor_equal_ceil)
mu_delta = q_dist_tp1_best * (b - lb)
ml_delta = tf.reduce_sum(
l_project * tf.expand_dims(ml_delta, -1), axis=1)
mu_delta = tf.reduce_sum(
u_project * tf.expand_dims(mu_delta, -1), axis=1)
m = ml_delta + mu_delta
# Rainbow paper claims that using this cross entropy loss for
# priority is robust and insensitive to `prioritized_replay_alpha`
self.td_error = tf.nn.softmax_cross_entropy_with_logits(
labels=m, logits=q_logits_t_selected)
self.loss = tf.reduce_mean(self.td_error * importance_weights)
self.stats = {
# TODO: better Q stats for dist dqn
"mean_td_error": tf.reduce_mean(self.td_error),
}
else:
q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rewards + gamma**n_step * q_tp1_best_masked
# compute the error (potentially clipped)
self.td_error = (
q_t_selected - tf.stop_gradient(q_t_selected_target))
self.loss = tf.reduce_mean(
tf.cast(importance_weights, tf.float32) * huber_loss(
self.td_error))
self.stats = {
"mean_q": tf.reduce_mean(q_t_selected),
"min_q": tf.reduce_min(q_t_selected),
"max_q": tf.reduce_max(q_t_selected),
"mean_td_error": tf.reduce_mean(self.td_error),
}
class ComputeTDErrorMixin:
def __init__(self):
@make_tf_callable(self.get_session(), dynamic_shape=True)
def compute_td_error(obs_t, act_t, rew_t, obs_tp1, done_mask,
importance_weights):
# Do forward pass on loss to update td error attribute
build_q_losses(
self, self.model, None, {
SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
SampleBatch.DONES: tf.convert_to_tensor(done_mask),
PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
})
return self.q_loss.td_error
self.compute_td_error = compute_td_error
def postprocess_trajectory(policy,
sample_batch,
other_agent_batches=None,
episode=None):
if policy.config["parameter_noise"]:
# adjust the sigma of parameter space noise
states = [list(x) for x in sample_batch.columns(["obs"])][0]
noisy_action_distribution = policy.get_session().run(
policy.action_probs, feed_dict={policy.cur_observations: states})
policy.get_session().run(policy.remove_noise_op)
clean_action_distribution = policy.get_session().run(
policy.action_probs, feed_dict={policy.cur_observations: states})
distance_in_action_space = np.mean(
entropy(clean_action_distribution.T, noisy_action_distribution.T))
policy.pi_distance = distance_in_action_space
if (distance_in_action_space <
-np.log(1 - policy.cur_epsilon_value +
policy.cur_epsilon_value / policy.num_actions)):
policy.parameter_noise_sigma_val *= 1.01
else:
policy.parameter_noise_sigma_val /= 1.01
policy.parameter_noise_sigma.load(
policy.parameter_noise_sigma_val, session=policy.get_session())
return postprocess_nstep_and_prio(policy, sample_batch)
def build_q_model(policy, obs_space, action_space, config):
if not isinstance(action_space, Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space))
if config["hiddens"]:
# try to infer the last layer size, otherwise fall back to 256
num_outputs = ([256] + config["model"]["fcnet_hiddens"])[-1]
config["model"]["no_final_linear"] = True
else:
num_outputs = action_space.n
policy.q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
model_interface=DistributionalQModel,
name=Q_SCOPE,
num_atoms=config["num_atoms"],
q_hiddens=config["hiddens"],
dueling=config["dueling"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
parameter_noise=config["parameter_noise"])
policy.target_q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
model_interface=DistributionalQModel,
name=Q_TARGET_SCOPE,
num_atoms=config["num_atoms"],
q_hiddens=config["hiddens"],
dueling=config["dueling"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
parameter_noise=config["parameter_noise"])
return policy.q_model
def get_log_likelihood(policy, q_model, actions, input_dict, obs_space,
action_space, config):
# Action Q network.
q_vals = _compute_q_values(policy, q_model,
input_dict[SampleBatch.CUR_OBS], obs_space,
action_space)
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
action_dist = Categorical(q_vals, q_model)
return action_dist.logp(actions)
def sample_action_from_q_network(policy, q_model, input_dict, obs_space,
action_space, explore, config, timestep):
# Action Q network.
q_vals = _compute_q_values(policy, q_model,
input_dict[SampleBatch.CUR_OBS], obs_space,
action_space)
policy.q_values = q_vals[0] if isinstance(q_vals, tuple) else q_vals
policy.q_func_vars = q_model.variables()
policy.output_actions, policy.sampled_action_logp = \
policy.exploration.get_exploration_action(
policy.q_values, Categorical, q_model, timestep, explore)
# Noise vars for Q network except for layer normalization vars.
if config["parameter_noise"]:
_build_parameter_noise(
policy,
[var for var in policy.q_func_vars if "LayerNorm" not in var.name])
policy.action_probs = tf.nn.softmax(policy.q_values)
return policy.output_actions, policy.sampled_action_logp
def _build_parameter_noise(policy, pnet_params):
policy.parameter_noise_sigma_val = 1.0
policy.parameter_noise_sigma = tf.get_variable(
initializer=tf.constant_initializer(policy.parameter_noise_sigma_val),
name="parameter_noise_sigma",
shape=(),
trainable=False,
dtype=tf.float32)
policy.parameter_noise = list()
# No need to add any noise on LayerNorm parameters
for var in pnet_params:
noise_var = tf.get_variable(
name=var.name.split(":")[0] + "_noise",
shape=var.shape,
initializer=tf.constant_initializer(.0),
trainable=False)
policy.parameter_noise.append(noise_var)
remove_noise_ops = list()
for var, var_noise in zip(pnet_params, policy.parameter_noise):
remove_noise_ops.append(tf.assign_add(var, -var_noise))
policy.remove_noise_op = tf.group(*tuple(remove_noise_ops))
generate_noise_ops = list()
for var_noise in policy.parameter_noise:
generate_noise_ops.append(
tf.assign(
var_noise,
tf.random_normal(
shape=var_noise.shape,
stddev=policy.parameter_noise_sigma)))
with tf.control_dependencies(generate_noise_ops):
add_noise_ops = list()
for var, var_noise in zip(pnet_params, policy.parameter_noise):
add_noise_ops.append(tf.assign_add(var, var_noise))
policy.add_noise_op = tf.group(*tuple(add_noise_ops))
policy.pi_distance = None
def build_q_losses(policy, model, _, train_batch):
config = policy.config
# q network evaluation
q_t, q_logits_t, q_dist_t = _compute_q_values(
policy, policy.q_model, train_batch[SampleBatch.CUR_OBS],
policy.observation_space, policy.action_space)
# target q network evalution
q_tp1, q_logits_tp1, q_dist_tp1 = _compute_q_values(
policy, policy.target_q_model, train_batch[SampleBatch.NEXT_OBS],
policy.observation_space, policy.action_space)
policy.target_q_func_vars = policy.target_q_model.variables()
# q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32),
policy.action_space.n)
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
q_logits_t_selected = tf.reduce_sum(
q_logits_t * tf.expand_dims(one_hot_selection, -1), 1)
# compute estimate of best possible value starting from state at t + 1
if config["double_q"]:
q_tp1_using_online_net, q_logits_tp1_using_online_net, \
q_dist_tp1_using_online_net = _compute_q_values(
policy, policy.q_model,
train_batch[SampleBatch.NEXT_OBS],
policy.observation_space, policy.action_space)
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
q_tp1_best_one_hot_selection = tf.one_hot(q_tp1_best_using_online_net,
policy.action_space.n)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_dist_tp1_best = tf.reduce_sum(
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1)
else:
q_tp1_best_one_hot_selection = tf.one_hot(
tf.argmax(q_tp1, 1), policy.action_space.n)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_dist_tp1_best = tf.reduce_sum(
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1)
policy.q_loss = QLoss(
q_t_selected, q_logits_t_selected, q_tp1_best, q_dist_tp1_best,
train_batch[PRIO_WEIGHTS], train_batch[SampleBatch.REWARDS],
tf.cast(train_batch[SampleBatch.DONES],
tf.float32), config["gamma"], config["n_step"],
config["num_atoms"], config["v_min"], config["v_max"])
return policy.q_loss.loss
def adam_optimizer(policy, config):
return tf.train.AdamOptimizer(
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"])
def clip_gradients(policy, optimizer, loss):
if policy.config["grad_norm_clipping"] is not None:
grads_and_vars = minimize_and_clip(
optimizer,
loss,
var_list=policy.q_func_vars,
clip_val=policy.config["grad_norm_clipping"])
else:
grads_and_vars = optimizer.compute_gradients(
loss, var_list=policy.q_func_vars)
grads_and_vars = [(g, v) for (g, v) in grads_and_vars if g is not None]
return grads_and_vars
def build_q_stats(policy, batch):
return dict({
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
}, **policy.q_loss.stats)
def setup_early_mixins(policy, obs_space, action_space, config):
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
ParameterNoiseMixin.__init__(policy, obs_space, action_space, config)
def setup_mid_mixins(policy, obs_space, action_space, config):
ComputeTDErrorMixin.__init__(policy)
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
def _compute_q_values(policy, model, obs, obs_space, action_space):
config = policy.config
model_out, state = model({
"obs": obs,
"is_training": policy._get_is_training_placeholder(),
}, [], None)
if config["num_atoms"] > 1:
(action_scores, z, support_logits_per_action, logits,
dist) = model.get_q_value_distributions(model_out)
else:
(action_scores, logits,
dist) = model.get_q_value_distributions(model_out)
if config["dueling"]:
state_score = model.get_state_value(model_out)
if config["num_atoms"] > 1:
support_logits_per_action_mean = tf.reduce_mean(
support_logits_per_action, 1)
support_logits_per_action_centered = (
support_logits_per_action - tf.expand_dims(
support_logits_per_action_mean, 1))
support_logits_per_action = tf.expand_dims(
state_score, 1) + support_logits_per_action_centered
support_prob_per_action = tf.nn.softmax(
logits=support_logits_per_action)
value = tf.reduce_sum(
input_tensor=z * support_prob_per_action, axis=-1)
logits = support_logits_per_action
dist = support_prob_per_action
else:
action_scores_mean = reduce_mean_ignore_inf(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(
action_scores_mean, 1)
value = state_score + action_scores_centered
else:
value = action_scores
return value, logits, dist
def _adjust_nstep(n_step, gamma, obs, actions, rewards, new_obs, dones):
"""Rewrites the given trajectory fragments to encode n-step rewards.
reward[i] = (
reward[i] * gamma**0 +
reward[i+1] * gamma**1 +
... +
reward[i+n_step-1] * gamma**(n_step-1))
The ith new_obs is also adjusted to point to the (i+n_step-1)'th new obs.
At the end of the trajectory, n is truncated to fit in the traj length.
"""
assert not any(dones[:-1]), "Unexpected done in middle of trajectory"
traj_length = len(rewards)
for i in range(traj_length):
for j in range(1, n_step):
if i + j < traj_length:
new_obs[i] = new_obs[i + j]
dones[i] = dones[i + j]
rewards[i] += gamma**j * rewards[i + j]
def postprocess_nstep_and_prio(policy, batch, other_agent=None, episode=None):
# N-step Q adjustments
if policy.config["n_step"] > 1:
_adjust_nstep(policy.config["n_step"], policy.config["gamma"],
batch[SampleBatch.CUR_OBS], batch[SampleBatch.ACTIONS],
batch[SampleBatch.REWARDS], batch[SampleBatch.NEXT_OBS],
batch[SampleBatch.DONES])
if PRIO_WEIGHTS not in batch:
batch[PRIO_WEIGHTS] = np.ones_like(batch[SampleBatch.REWARDS])
# Prioritize on the worker side
if batch.count > 0 and policy.config["worker_side_prioritization"]:
td_errors = policy.compute_td_error(
batch[SampleBatch.CUR_OBS], batch[SampleBatch.ACTIONS],
batch[SampleBatch.REWARDS], batch[SampleBatch.NEXT_OBS],
batch[SampleBatch.DONES], batch[PRIO_WEIGHTS])
new_priorities = (
np.abs(td_errors) + policy.config["prioritized_replay_eps"])
batch.data[PRIO_WEIGHTS] = new_priorities
return batch
DQNTFPolicy = build_tf_policy(
name="DQNTFPolicy",
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
make_model=build_q_model,
action_sampler_fn=sample_action_from_q_network,
log_likelihood_fn=get_log_likelihood,
loss_fn=build_q_losses,
stats_fn=build_q_stats,
postprocess_fn=postprocess_nstep_and_prio,
optimizer_fn=adam_optimizer,
gradients_fn=clip_gradients,
extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values},
extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
before_init=setup_early_mixins,
before_loss_init=setup_mid_mixins,
after_init=setup_late_mixins,
obs_include_prev_action_reward=False,
mixins=[
ParameterNoiseMixin,
TargetNetworkMixin,
ComputeTDErrorMixin,
LearningRateSchedule,
])