mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
477 lines
19 KiB
Python
477 lines
19 KiB
Python
from gym.spaces import Discrete
|
|
import numpy as np
|
|
from scipy.stats import entropy
|
|
|
|
import ray
|
|
from ray.rllib.agents.dqn.distributional_q_model import DistributionalQModel
|
|
from ray.rllib.agents.dqn.simple_q_policy import TargetNetworkMixin, \
|
|
ParameterNoiseMixin
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.models.tf.tf_action_dist import Categorical
|
|
from ray.rllib.utils.error import UnsupportedSpaceException
|
|
from ray.rllib.policy.tf_policy import LearningRateSchedule
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils.tf_ops import huber_loss, reduce_mean_ignore_inf, \
|
|
minimize_and_clip
|
|
from ray.rllib.utils import try_import_tf
|
|
from ray.rllib.utils.tf_ops import make_tf_callable
|
|
|
|
tf = try_import_tf()
|
|
|
|
Q_SCOPE = "q_func"
|
|
Q_TARGET_SCOPE = "target_q_func"
|
|
|
|
# Importance sampling weights for prioritized replay
|
|
PRIO_WEIGHTS = "weights"
|
|
|
|
|
|
class QLoss:
|
|
def __init__(self,
|
|
q_t_selected,
|
|
q_logits_t_selected,
|
|
q_tp1_best,
|
|
q_dist_tp1_best,
|
|
importance_weights,
|
|
rewards,
|
|
done_mask,
|
|
gamma=0.99,
|
|
n_step=1,
|
|
num_atoms=1,
|
|
v_min=-10.0,
|
|
v_max=10.0):
|
|
|
|
if num_atoms > 1:
|
|
# Distributional Q-learning which corresponds to an entropy loss
|
|
|
|
z = tf.range(num_atoms, dtype=tf.float32)
|
|
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
|
|
|
|
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
|
|
r_tau = tf.expand_dims(
|
|
rewards, -1) + gamma**n_step * tf.expand_dims(
|
|
1.0 - done_mask, -1) * tf.expand_dims(z, 0)
|
|
r_tau = tf.clip_by_value(r_tau, v_min, v_max)
|
|
b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
|
|
lb = tf.floor(b)
|
|
ub = tf.ceil(b)
|
|
# indispensable judgement which is missed in most implementations
|
|
# when b happens to be an integer, lb == ub, so pr_j(s', a*) will
|
|
# be discarded because (ub-b) == (b-lb) == 0
|
|
floor_equal_ceil = tf.to_float(tf.less(ub - lb, 0.5))
|
|
|
|
l_project = tf.one_hot(
|
|
tf.cast(lb, dtype=tf.int32),
|
|
num_atoms) # (batch_size, num_atoms, num_atoms)
|
|
u_project = tf.one_hot(
|
|
tf.cast(ub, dtype=tf.int32),
|
|
num_atoms) # (batch_size, num_atoms, num_atoms)
|
|
ml_delta = q_dist_tp1_best * (ub - b + floor_equal_ceil)
|
|
mu_delta = q_dist_tp1_best * (b - lb)
|
|
ml_delta = tf.reduce_sum(
|
|
l_project * tf.expand_dims(ml_delta, -1), axis=1)
|
|
mu_delta = tf.reduce_sum(
|
|
u_project * tf.expand_dims(mu_delta, -1), axis=1)
|
|
m = ml_delta + mu_delta
|
|
|
|
# Rainbow paper claims that using this cross entropy loss for
|
|
# priority is robust and insensitive to `prioritized_replay_alpha`
|
|
self.td_error = tf.nn.softmax_cross_entropy_with_logits(
|
|
labels=m, logits=q_logits_t_selected)
|
|
self.loss = tf.reduce_mean(self.td_error * importance_weights)
|
|
self.stats = {
|
|
# TODO: better Q stats for dist dqn
|
|
"mean_td_error": tf.reduce_mean(self.td_error),
|
|
}
|
|
else:
|
|
q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best
|
|
|
|
# compute RHS of bellman equation
|
|
q_t_selected_target = rewards + gamma**n_step * q_tp1_best_masked
|
|
|
|
# compute the error (potentially clipped)
|
|
self.td_error = (
|
|
q_t_selected - tf.stop_gradient(q_t_selected_target))
|
|
self.loss = tf.reduce_mean(
|
|
tf.cast(importance_weights, tf.float32) * huber_loss(
|
|
self.td_error))
|
|
self.stats = {
|
|
"mean_q": tf.reduce_mean(q_t_selected),
|
|
"min_q": tf.reduce_min(q_t_selected),
|
|
"max_q": tf.reduce_max(q_t_selected),
|
|
"mean_td_error": tf.reduce_mean(self.td_error),
|
|
}
|
|
|
|
|
|
class ComputeTDErrorMixin:
|
|
def __init__(self):
|
|
@make_tf_callable(self.get_session(), dynamic_shape=True)
|
|
def compute_td_error(obs_t, act_t, rew_t, obs_tp1, done_mask,
|
|
importance_weights):
|
|
# Do forward pass on loss to update td error attribute
|
|
build_q_losses(
|
|
self, self.model, None, {
|
|
SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
|
|
SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
|
|
SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
|
|
SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
|
|
SampleBatch.DONES: tf.convert_to_tensor(done_mask),
|
|
PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
|
|
})
|
|
|
|
return self.q_loss.td_error
|
|
|
|
self.compute_td_error = compute_td_error
|
|
|
|
|
|
def postprocess_trajectory(policy,
|
|
sample_batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
if policy.config["parameter_noise"]:
|
|
# adjust the sigma of parameter space noise
|
|
states = [list(x) for x in sample_batch.columns(["obs"])][0]
|
|
|
|
noisy_action_distribution = policy.get_session().run(
|
|
policy.action_probs, feed_dict={policy.cur_observations: states})
|
|
policy.get_session().run(policy.remove_noise_op)
|
|
clean_action_distribution = policy.get_session().run(
|
|
policy.action_probs, feed_dict={policy.cur_observations: states})
|
|
distance_in_action_space = np.mean(
|
|
entropy(clean_action_distribution.T, noisy_action_distribution.T))
|
|
policy.pi_distance = distance_in_action_space
|
|
if (distance_in_action_space <
|
|
-np.log(1 - policy.cur_epsilon_value +
|
|
policy.cur_epsilon_value / policy.num_actions)):
|
|
policy.parameter_noise_sigma_val *= 1.01
|
|
else:
|
|
policy.parameter_noise_sigma_val /= 1.01
|
|
policy.parameter_noise_sigma.load(
|
|
policy.parameter_noise_sigma_val, session=policy.get_session())
|
|
|
|
return postprocess_nstep_and_prio(policy, sample_batch)
|
|
|
|
|
|
def build_q_model(policy, obs_space, action_space, config):
|
|
|
|
if not isinstance(action_space, Discrete):
|
|
raise UnsupportedSpaceException(
|
|
"Action space {} is not supported for DQN.".format(action_space))
|
|
|
|
if config["hiddens"]:
|
|
# try to infer the last layer size, otherwise fall back to 256
|
|
num_outputs = ([256] + config["model"]["fcnet_hiddens"])[-1]
|
|
config["model"]["no_final_linear"] = True
|
|
else:
|
|
num_outputs = action_space.n
|
|
|
|
policy.q_model = ModelCatalog.get_model_v2(
|
|
obs_space,
|
|
action_space,
|
|
num_outputs,
|
|
config["model"],
|
|
framework="tf",
|
|
model_interface=DistributionalQModel,
|
|
name=Q_SCOPE,
|
|
num_atoms=config["num_atoms"],
|
|
q_hiddens=config["hiddens"],
|
|
dueling=config["dueling"],
|
|
use_noisy=config["noisy"],
|
|
v_min=config["v_min"],
|
|
v_max=config["v_max"],
|
|
sigma0=config["sigma0"],
|
|
parameter_noise=config["parameter_noise"])
|
|
|
|
policy.target_q_model = ModelCatalog.get_model_v2(
|
|
obs_space,
|
|
action_space,
|
|
num_outputs,
|
|
config["model"],
|
|
framework="tf",
|
|
model_interface=DistributionalQModel,
|
|
name=Q_TARGET_SCOPE,
|
|
num_atoms=config["num_atoms"],
|
|
q_hiddens=config["hiddens"],
|
|
dueling=config["dueling"],
|
|
use_noisy=config["noisy"],
|
|
v_min=config["v_min"],
|
|
v_max=config["v_max"],
|
|
sigma0=config["sigma0"],
|
|
parameter_noise=config["parameter_noise"])
|
|
|
|
return policy.q_model
|
|
|
|
|
|
def get_log_likelihood(policy, q_model, actions, input_dict, obs_space,
|
|
action_space, config):
|
|
# Action Q network.
|
|
q_vals = _compute_q_values(policy, q_model,
|
|
input_dict[SampleBatch.CUR_OBS], obs_space,
|
|
action_space)
|
|
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
|
|
action_dist = Categorical(q_vals, q_model)
|
|
return action_dist.logp(actions)
|
|
|
|
|
|
def sample_action_from_q_network(policy, q_model, input_dict, obs_space,
|
|
action_space, explore, config, timestep):
|
|
# Action Q network.
|
|
q_vals = _compute_q_values(policy, q_model,
|
|
input_dict[SampleBatch.CUR_OBS], obs_space,
|
|
action_space)
|
|
policy.q_values = q_vals[0] if isinstance(q_vals, tuple) else q_vals
|
|
policy.q_func_vars = q_model.variables()
|
|
|
|
policy.output_actions, policy.sampled_action_logp = \
|
|
policy.exploration.get_exploration_action(
|
|
policy.q_values, Categorical, q_model, timestep, explore)
|
|
|
|
# Noise vars for Q network except for layer normalization vars.
|
|
if config["parameter_noise"]:
|
|
_build_parameter_noise(
|
|
policy,
|
|
[var for var in policy.q_func_vars if "LayerNorm" not in var.name])
|
|
policy.action_probs = tf.nn.softmax(policy.q_values)
|
|
|
|
return policy.output_actions, policy.sampled_action_logp
|
|
|
|
|
|
def _build_parameter_noise(policy, pnet_params):
|
|
policy.parameter_noise_sigma_val = 1.0
|
|
policy.parameter_noise_sigma = tf.get_variable(
|
|
initializer=tf.constant_initializer(policy.parameter_noise_sigma_val),
|
|
name="parameter_noise_sigma",
|
|
shape=(),
|
|
trainable=False,
|
|
dtype=tf.float32)
|
|
policy.parameter_noise = list()
|
|
# No need to add any noise on LayerNorm parameters
|
|
for var in pnet_params:
|
|
noise_var = tf.get_variable(
|
|
name=var.name.split(":")[0] + "_noise",
|
|
shape=var.shape,
|
|
initializer=tf.constant_initializer(.0),
|
|
trainable=False)
|
|
policy.parameter_noise.append(noise_var)
|
|
remove_noise_ops = list()
|
|
for var, var_noise in zip(pnet_params, policy.parameter_noise):
|
|
remove_noise_ops.append(tf.assign_add(var, -var_noise))
|
|
policy.remove_noise_op = tf.group(*tuple(remove_noise_ops))
|
|
generate_noise_ops = list()
|
|
for var_noise in policy.parameter_noise:
|
|
generate_noise_ops.append(
|
|
tf.assign(
|
|
var_noise,
|
|
tf.random_normal(
|
|
shape=var_noise.shape,
|
|
stddev=policy.parameter_noise_sigma)))
|
|
with tf.control_dependencies(generate_noise_ops):
|
|
add_noise_ops = list()
|
|
for var, var_noise in zip(pnet_params, policy.parameter_noise):
|
|
add_noise_ops.append(tf.assign_add(var, var_noise))
|
|
policy.add_noise_op = tf.group(*tuple(add_noise_ops))
|
|
policy.pi_distance = None
|
|
|
|
|
|
def build_q_losses(policy, model, _, train_batch):
|
|
config = policy.config
|
|
# q network evaluation
|
|
q_t, q_logits_t, q_dist_t = _compute_q_values(
|
|
policy, policy.q_model, train_batch[SampleBatch.CUR_OBS],
|
|
policy.observation_space, policy.action_space)
|
|
|
|
# target q network evalution
|
|
q_tp1, q_logits_tp1, q_dist_tp1 = _compute_q_values(
|
|
policy, policy.target_q_model, train_batch[SampleBatch.NEXT_OBS],
|
|
policy.observation_space, policy.action_space)
|
|
policy.target_q_func_vars = policy.target_q_model.variables()
|
|
|
|
# q scores for actions which we know were selected in the given state.
|
|
one_hot_selection = tf.one_hot(
|
|
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32),
|
|
policy.action_space.n)
|
|
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
|
|
q_logits_t_selected = tf.reduce_sum(
|
|
q_logits_t * tf.expand_dims(one_hot_selection, -1), 1)
|
|
|
|
# compute estimate of best possible value starting from state at t + 1
|
|
if config["double_q"]:
|
|
q_tp1_using_online_net, q_logits_tp1_using_online_net, \
|
|
q_dist_tp1_using_online_net = _compute_q_values(
|
|
policy, policy.q_model,
|
|
train_batch[SampleBatch.NEXT_OBS],
|
|
policy.observation_space, policy.action_space)
|
|
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
|
|
q_tp1_best_one_hot_selection = tf.one_hot(q_tp1_best_using_online_net,
|
|
policy.action_space.n)
|
|
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
|
|
q_dist_tp1_best = tf.reduce_sum(
|
|
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1)
|
|
else:
|
|
q_tp1_best_one_hot_selection = tf.one_hot(
|
|
tf.argmax(q_tp1, 1), policy.action_space.n)
|
|
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
|
|
q_dist_tp1_best = tf.reduce_sum(
|
|
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1)
|
|
|
|
policy.q_loss = QLoss(
|
|
q_t_selected, q_logits_t_selected, q_tp1_best, q_dist_tp1_best,
|
|
train_batch[PRIO_WEIGHTS], train_batch[SampleBatch.REWARDS],
|
|
tf.cast(train_batch[SampleBatch.DONES],
|
|
tf.float32), config["gamma"], config["n_step"],
|
|
config["num_atoms"], config["v_min"], config["v_max"])
|
|
|
|
return policy.q_loss.loss
|
|
|
|
|
|
def adam_optimizer(policy, config):
|
|
return tf.train.AdamOptimizer(
|
|
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"])
|
|
|
|
|
|
def clip_gradients(policy, optimizer, loss):
|
|
if policy.config["grad_norm_clipping"] is not None:
|
|
grads_and_vars = minimize_and_clip(
|
|
optimizer,
|
|
loss,
|
|
var_list=policy.q_func_vars,
|
|
clip_val=policy.config["grad_norm_clipping"])
|
|
else:
|
|
grads_and_vars = optimizer.compute_gradients(
|
|
loss, var_list=policy.q_func_vars)
|
|
grads_and_vars = [(g, v) for (g, v) in grads_and_vars if g is not None]
|
|
return grads_and_vars
|
|
|
|
|
|
def build_q_stats(policy, batch):
|
|
return dict({
|
|
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
|
|
}, **policy.q_loss.stats)
|
|
|
|
|
|
def setup_early_mixins(policy, obs_space, action_space, config):
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
ParameterNoiseMixin.__init__(policy, obs_space, action_space, config)
|
|
|
|
|
|
def setup_mid_mixins(policy, obs_space, action_space, config):
|
|
ComputeTDErrorMixin.__init__(policy)
|
|
|
|
|
|
def setup_late_mixins(policy, obs_space, action_space, config):
|
|
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
|
|
|
|
|
|
def _compute_q_values(policy, model, obs, obs_space, action_space):
|
|
config = policy.config
|
|
model_out, state = model({
|
|
"obs": obs,
|
|
"is_training": policy._get_is_training_placeholder(),
|
|
}, [], None)
|
|
|
|
if config["num_atoms"] > 1:
|
|
(action_scores, z, support_logits_per_action, logits,
|
|
dist) = model.get_q_value_distributions(model_out)
|
|
else:
|
|
(action_scores, logits,
|
|
dist) = model.get_q_value_distributions(model_out)
|
|
|
|
if config["dueling"]:
|
|
state_score = model.get_state_value(model_out)
|
|
if config["num_atoms"] > 1:
|
|
support_logits_per_action_mean = tf.reduce_mean(
|
|
support_logits_per_action, 1)
|
|
support_logits_per_action_centered = (
|
|
support_logits_per_action - tf.expand_dims(
|
|
support_logits_per_action_mean, 1))
|
|
support_logits_per_action = tf.expand_dims(
|
|
state_score, 1) + support_logits_per_action_centered
|
|
support_prob_per_action = tf.nn.softmax(
|
|
logits=support_logits_per_action)
|
|
value = tf.reduce_sum(
|
|
input_tensor=z * support_prob_per_action, axis=-1)
|
|
logits = support_logits_per_action
|
|
dist = support_prob_per_action
|
|
else:
|
|
action_scores_mean = reduce_mean_ignore_inf(action_scores, 1)
|
|
action_scores_centered = action_scores - tf.expand_dims(
|
|
action_scores_mean, 1)
|
|
value = state_score + action_scores_centered
|
|
else:
|
|
value = action_scores
|
|
|
|
return value, logits, dist
|
|
|
|
|
|
def _adjust_nstep(n_step, gamma, obs, actions, rewards, new_obs, dones):
|
|
"""Rewrites the given trajectory fragments to encode n-step rewards.
|
|
|
|
reward[i] = (
|
|
reward[i] * gamma**0 +
|
|
reward[i+1] * gamma**1 +
|
|
... +
|
|
reward[i+n_step-1] * gamma**(n_step-1))
|
|
|
|
The ith new_obs is also adjusted to point to the (i+n_step-1)'th new obs.
|
|
|
|
At the end of the trajectory, n is truncated to fit in the traj length.
|
|
"""
|
|
|
|
assert not any(dones[:-1]), "Unexpected done in middle of trajectory"
|
|
|
|
traj_length = len(rewards)
|
|
for i in range(traj_length):
|
|
for j in range(1, n_step):
|
|
if i + j < traj_length:
|
|
new_obs[i] = new_obs[i + j]
|
|
dones[i] = dones[i + j]
|
|
rewards[i] += gamma**j * rewards[i + j]
|
|
|
|
|
|
def postprocess_nstep_and_prio(policy, batch, other_agent=None, episode=None):
|
|
# N-step Q adjustments
|
|
if policy.config["n_step"] > 1:
|
|
_adjust_nstep(policy.config["n_step"], policy.config["gamma"],
|
|
batch[SampleBatch.CUR_OBS], batch[SampleBatch.ACTIONS],
|
|
batch[SampleBatch.REWARDS], batch[SampleBatch.NEXT_OBS],
|
|
batch[SampleBatch.DONES])
|
|
|
|
if PRIO_WEIGHTS not in batch:
|
|
batch[PRIO_WEIGHTS] = np.ones_like(batch[SampleBatch.REWARDS])
|
|
|
|
# Prioritize on the worker side
|
|
if batch.count > 0 and policy.config["worker_side_prioritization"]:
|
|
td_errors = policy.compute_td_error(
|
|
batch[SampleBatch.CUR_OBS], batch[SampleBatch.ACTIONS],
|
|
batch[SampleBatch.REWARDS], batch[SampleBatch.NEXT_OBS],
|
|
batch[SampleBatch.DONES], batch[PRIO_WEIGHTS])
|
|
new_priorities = (
|
|
np.abs(td_errors) + policy.config["prioritized_replay_eps"])
|
|
batch.data[PRIO_WEIGHTS] = new_priorities
|
|
|
|
return batch
|
|
|
|
|
|
DQNTFPolicy = build_tf_policy(
|
|
name="DQNTFPolicy",
|
|
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
|
|
make_model=build_q_model,
|
|
action_sampler_fn=sample_action_from_q_network,
|
|
log_likelihood_fn=get_log_likelihood,
|
|
loss_fn=build_q_losses,
|
|
stats_fn=build_q_stats,
|
|
postprocess_fn=postprocess_nstep_and_prio,
|
|
optimizer_fn=adam_optimizer,
|
|
gradients_fn=clip_gradients,
|
|
extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values},
|
|
extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
|
|
before_init=setup_early_mixins,
|
|
before_loss_init=setup_mid_mixins,
|
|
after_init=setup_late_mixins,
|
|
obs_include_prev_action_reward=False,
|
|
mixins=[
|
|
ParameterNoiseMixin,
|
|
TargetNetworkMixin,
|
|
ComputeTDErrorMixin,
|
|
LearningRateSchedule,
|
|
])
|