ray/doc/source/raysgd/raysgd.rst
Amog Kamsetty 415be78cc0
[RaySGD] Simplify Builder Process (#10321)
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
2020-09-08 15:19:40 -07:00

73 lines
2.5 KiB
ReStructuredText

.. _sgd-index:
=====================================
RaySGD: Distributed Training Wrappers
=====================================
.. _`issue on GitHub`: https://github.com/ray-project/ray/issues
RaySGD is a lightweight library for distributed deep learning, providing thin wrappers around PyTorch and TensorFlow native modules for data parallel training.
The main features are:
- **Ease of use**: Scale PyTorch's native ``DistributedDataParallel`` and TensorFlow's ``tf.distribute.MirroredStrategy`` without needing to monitor individual nodes.
- **Composability**: RaySGD is built on top of the Ray Actor API, enabling seamless integration with existing Ray applications such as RLlib, Tune, and Ray.Serve.
- **Scale up and down**: Start on single CPU. Scale up to multi-node, multi-CPU, or multi-GPU clusters by changing 2 lines of code.
.. tip:: Join our `community slack <https://forms.gle/9TSdDYUgxYs8SA9e8>`_ to discuss Ray!
Getting Started
---------------
You can start a ``TorchTrainer`` with the following:
.. code-block:: python
import ray
from ray.util.sgd import TorchTrainer
from ray.util.sgd.torch import TrainingOperator
from ray.util.sgd.torch.examples.train_example import LinearDataset
import torch
from torch.utils.data import DataLoader
class CustomTrainingOperator(TrainingOperator):
def setup(self, config):
# Load data.
train_loader = DataLoader(LinearDataset(2, 5), config["batch_size"])
val_loader = DataLoader(LinearDataset(2, 5), config["batch_size"])
# Create model.
model = torch.nn.Linear(1, 1)
# Create optimizer.
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
# Create loss.
loss = torch.nn.MSELoss()
# Register model, optimizer, and loss.
self.model, self.optimizer, self.criterion = self.register(
models=model,
optimizers=optimizer,
criterion=loss)
# Register data loaders.
self.register_data(train_loader=train_loader, validation_loader=val_loader)
ray.init()
trainer1 = TorchTrainer(
training_operator_cls=CustomTrainingOperator,
num_workers=2,
use_gpu=False,
config={"batch_size": 64})
stats = trainer1.train()
print(stats)
trainer1.shutdown()
print("success!")
.. tip:: Get in touch with us if you're using or considering using `RaySGD <https://forms.gle/26EMwdahdgm7Lscy9>`_!