ray/rllib/policy/dynamic_tf_policy_v2.py

1048 lines
40 KiB
Python

from collections import OrderedDict
import gym
import logging
import re
import tree # pip install dm_tree
from typing import Dict, List, Optional, Tuple, Type, TYPE_CHECKING, Union
from ray.util.debug import log_once
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.policy.dynamic_tf_policy import TFMultiGPUTowerStack
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.utils import force_list
from ray.rllib.utils.annotations import (
DeveloperAPI,
OverrideToImplementCustomLogic,
OverrideToImplementCustomLogic_CallToSuperRecommended,
is_overridden,
override,
)
from ray.rllib.utils.debug import summarize
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.spaces.space_utils import get_dummy_batch_for_space
from ray.rllib.utils.tf_utils import get_placeholder
from ray.rllib.utils.typing import (
LocalOptimizer,
ModelGradients,
TensorType,
TrainerConfigDict,
)
if TYPE_CHECKING:
from ray.rllib.evaluation import Episode
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
@DeveloperAPI
class DynamicTFPolicyV2(TFPolicy):
"""A TFPolicy that auto-defines placeholders dynamically at runtime.
This class is intended to be used and extended by sub-classing.
"""
@DeveloperAPI
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
*,
existing_inputs: Optional[Dict[str, "tf1.placeholder"]] = None,
existing_model: Optional[ModelV2] = None,
):
self.observation_space = obs_space
self.action_space = action_space
config = dict(self.get_default_config(), **config)
self.config = config
self.framework = "tf"
self._seq_lens = None
self._is_tower = existing_inputs is not None
self.validate_spaces(obs_space, action_space, config)
self.dist_class = self._init_dist_class()
# Setup self.model.
if existing_model and isinstance(existing_model, list):
self.model = existing_model[0]
# TODO: (sven) hack, but works for `target_[q_]?model`.
for i in range(1, len(existing_model)):
setattr(self, existing_model[i][0], existing_model[i][1])
else:
self.model = self.make_model()
# Auto-update model's inference view requirements, if recurrent.
self._update_model_view_requirements_from_init_state()
self._init_state_inputs(existing_inputs)
self._init_view_requirements()
timestep, explore = self._init_input_dict_and_dummy_batch(existing_inputs)
(
sampled_action,
sampled_action_logp,
dist_inputs,
self._policy_extra_action_fetches,
) = self._init_action_fetches(timestep, explore)
# Phase 1 init.
sess = tf1.get_default_session() or tf1.Session(
config=tf1.ConfigProto(**self.config["tf_session_args"])
)
batch_divisibility_req = self.get_batch_divisibility_req()
prev_action_input = (
self._input_dict[SampleBatch.PREV_ACTIONS]
if SampleBatch.PREV_ACTIONS in self._input_dict.accessed_keys
else None
)
prev_reward_input = (
self._input_dict[SampleBatch.PREV_REWARDS]
if SampleBatch.PREV_REWARDS in self._input_dict.accessed_keys
else None
)
super().__init__(
observation_space=obs_space,
action_space=action_space,
config=config,
sess=sess,
obs_input=self._input_dict[SampleBatch.OBS],
action_input=self._input_dict[SampleBatch.ACTIONS],
sampled_action=sampled_action,
sampled_action_logp=sampled_action_logp,
dist_inputs=dist_inputs,
dist_class=self.dist_class,
loss=None, # dynamically initialized on run
loss_inputs=[],
model=self.model,
state_inputs=self._state_inputs,
state_outputs=self._state_out,
prev_action_input=prev_action_input,
prev_reward_input=prev_reward_input,
seq_lens=self._seq_lens,
max_seq_len=config["model"]["max_seq_len"],
batch_divisibility_req=batch_divisibility_req,
explore=explore,
timestep=timestep,
)
@DeveloperAPI
@staticmethod
def enable_eager_execution_if_necessary():
# This is static graph TF policy.
# Simply do nothing.
pass
@DeveloperAPI
@OverrideToImplementCustomLogic
def get_default_config(self) -> TrainerConfigDict:
return {}
@DeveloperAPI
@OverrideToImplementCustomLogic
def validate_spaces(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
):
return {}
@DeveloperAPI
@OverrideToImplementCustomLogic
@override(Policy)
def loss(
self,
model: Union[ModelV2, "tf.keras.Model"],
dist_class: Type[TFActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
"""Constructs loss computation graph for this TF1 policy.
Args:
model: The Model to calculate the loss for.
dist_class: The action distr. class.
train_batch: The training data.
Returns:
A single loss tensor or a list of loss tensors.
"""
raise NotImplementedError
@DeveloperAPI
@OverrideToImplementCustomLogic
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
"""Stats function. Returns a dict of statistics.
Args:
train_batch: The SampleBatch (already) used for training.
Returns:
The stats dict.
"""
return {}
@DeveloperAPI
@OverrideToImplementCustomLogic
def grad_stats_fn(
self, train_batch: SampleBatch, grads: ModelGradients
) -> Dict[str, TensorType]:
"""Gradient stats function. Returns a dict of statistics.
Args:
train_batch: The SampleBatch (already) used for training.
Returns:
The stats dict.
"""
return {}
@DeveloperAPI
@OverrideToImplementCustomLogic
def make_model(self) -> ModelV2:
"""Build underlying model for this Policy.
Returns:
The Model for the Policy to use.
"""
# Default ModelV2 model.
_, logit_dim = ModelCatalog.get_action_dist(
self.action_space, self.config["model"]
)
return ModelCatalog.get_model_v2(
obs_space=self.observation_space,
action_space=self.action_space,
num_outputs=logit_dim,
model_config=self.config["model"],
framework="tf",
)
@DeveloperAPI
@OverrideToImplementCustomLogic
def compute_gradients_fn(
self, optimizer: LocalOptimizer, loss: TensorType
) -> ModelGradients:
"""Gradients computing function (from loss tensor, using local optimizer).
Args:
policy (Policy): The Policy object that generated the loss tensor and
that holds the given local optimizer.
optimizer (LocalOptimizer): The tf (local) optimizer object to
calculate the gradients with.
loss (TensorType): The loss tensor for which gradients should be
calculated.
Returns:
ModelGradients: List of the possibly clipped gradients- and variable
tuples.
"""
return None
@DeveloperAPI
@OverrideToImplementCustomLogic
def apply_gradients_fn(
self,
policy: Policy,
optimizer: "tf.keras.optimizers.Optimizer",
grads: ModelGradients,
) -> "tf.Operation":
"""Gradients computing function (from loss tensor, using local optimizer).
Args:
policy (Policy): The Policy object that generated the loss tensor and
that holds the given local optimizer.
optimizer (LocalOptimizer): The tf (local) optimizer object to
calculate the gradients with.
grads (ModelGradients): The gradient tensor to be applied.
Returns:
"tf.Operation": TF operation that applies supplied gradients.
"""
return None
@DeveloperAPI
@OverrideToImplementCustomLogic
def action_sampler_fn(
self,
model: ModelV2,
*,
obs_batch: TensorType,
state_batches: TensorType,
**kwargs,
) -> Tuple[TensorType, TensorType, TensorType, List[TensorType]]:
"""Custom function for sampling new actions given policy.
Args:
model: Underlying model.
obs_batch: Observation tensor batch.
state_batches: Action sampling state batch.
Returns:
Sampled action
Log-likelihood
Action distribution inputs
Updated state
"""
return None, None, None, None
@DeveloperAPI
@OverrideToImplementCustomLogic
def action_distribution_fn(
self,
model: ModelV2,
*,
obs_batch: TensorType,
state_batches: TensorType,
**kwargs,
) -> Tuple[TensorType, type, List[TensorType]]:
"""Action distribution function for this Policy.
Args:
model: Underlying model.
obs_batch: Observation tensor batch.
state_batches: Action sampling state batch.
Returns:
Distribution input.
ActionDistribution class.
State outs.
"""
return None, None, None
@DeveloperAPI
@OverrideToImplementCustomLogic
def get_batch_divisibility_req(self) -> int:
"""Get batch divisibility request.
Returns:
Size N. A sample batch must be of size K*N.
"""
# By default, any sized batch is ok, so simply return 1.
return 1
@override(TFPolicy)
@DeveloperAPI
@OverrideToImplementCustomLogic_CallToSuperRecommended
def extra_action_out_fn(self) -> Dict[str, TensorType]:
"""Extra values to fetch and return from compute_actions().
Returns:
Dict[str, TensorType]: An extra fetch-dict to be passed to and
returned from the compute_actions() call.
"""
extra_action_fetches = super().extra_action_out_fn()
extra_action_fetches.update(self._policy_extra_action_fetches)
return extra_action_fetches
@DeveloperAPI
@OverrideToImplementCustomLogic_CallToSuperRecommended
def extra_learn_fetches_fn(self) -> Dict[str, TensorType]:
"""Extra stats to be reported after gradient computation.
Returns:
Dict[str, TensorType]: An extra fetch-dict.
"""
return {}
@override(TFPolicy)
def extra_compute_grad_fetches(self):
return dict({LEARNER_STATS_KEY: {}}, **self.extra_learn_fetches_fn())
@override(Policy)
@OverrideToImplementCustomLogic_CallToSuperRecommended
def postprocess_trajectory(
self,
sample_batch: SampleBatch,
other_agent_batches: Optional[SampleBatch] = None,
episode: Optional["Episode"] = None,
):
"""Post process trajectory in the format of a SampleBatch.
Args:
sample_batch: sample_batch: batch of experiences for the policy,
which will contain at most one episode trajectory.
other_agent_batches: In a multi-agent env, this contains a
mapping of agent ids to (policy, agent_batch) tuples
containing the policy and experiences of the other agents.
episode: An optional multi-agent episode object to provide
access to all of the internal episode state, which may
be useful for model-based or multi-agent algorithms.
Returns:
The postprocessed sample batch.
"""
return Policy.postprocess_trajectory(self, sample_batch)
@override(TFPolicy)
@OverrideToImplementCustomLogic
def optimizer(
self,
) -> Union["tf.keras.optimizers.Optimizer", List["tf.keras.optimizers.Optimizer"]]:
"""TF optimizer to use for policy optimization.
Returns:
A local optimizer or a list of local optimizers to use for this
Policy's Model.
"""
return super().optimizer()
def _init_dist_class(self):
if is_overridden(self.action_sampler_fn) or is_overridden(
self.action_distribution_fn
):
if not is_overridden(self.make_model):
raise ValueError(
"`make_model` is required if `action_sampler_fn` OR "
"`action_distribution_fn` is given"
)
else:
dist_class, _ = ModelCatalog.get_action_dist(
self.action_space, self.config["model"]
)
return dist_class
def _init_view_requirements(self):
# If ViewRequirements are explicitly specified.
if getattr(self, "view_requirements", None):
return
# Use default settings.
# Add NEXT_OBS, STATE_IN_0.., and others.
self.view_requirements = self._get_default_view_requirements()
# Combine view_requirements for Model and Policy.
# TODO(jungong) : models will not carry view_requirements once they
# are migrated to be organic Keras models.
self.view_requirements.update(self.model.view_requirements)
# Disable env-info placeholder.
if SampleBatch.INFOS in self.view_requirements:
self.view_requirements[SampleBatch.INFOS].used_for_training = False
def _init_state_inputs(self, existing_inputs: Dict[str, "tf1.placeholder"]):
"""Initialize input placeholders.
Args:
existing_inputs: existing placeholders.
"""
if existing_inputs:
self._state_inputs = [
v for k, v in existing_inputs.items() if k.startswith("state_in_")
]
# Placeholder for RNN time-chunk valid lengths.
if self._state_inputs:
self._seq_lens = existing_inputs[SampleBatch.SEQ_LENS]
# Create new input placeholders.
else:
self._state_inputs = [
get_placeholder(
space=vr.space,
time_axis=not isinstance(vr.shift, int),
name=k,
)
for k, vr in self.model.view_requirements.items()
if k.startswith("state_in_")
]
# Placeholder for RNN time-chunk valid lengths.
if self._state_inputs:
self._seq_lens = tf1.placeholder(
dtype=tf.int32, shape=[None], name="seq_lens"
)
def _init_input_dict_and_dummy_batch(
self, existing_inputs: Dict[str, "tf1.placeholder"]
) -> Tuple[Union[int, TensorType], Union[bool, TensorType]]:
"""Initialized input_dict and dummy_batch data.
Args:
existing_inputs: When copying a policy, this specifies an existing
dict of placeholders to use instead of defining new ones.
Returns:
timestep: training timestep.
explore: whether this policy should explore.
"""
# Setup standard placeholders.
if self._is_tower:
assert existing_inputs is not None
timestep = existing_inputs["timestep"]
explore = False
(
self._input_dict,
self._dummy_batch,
) = self._create_input_dict_and_dummy_batch(
self.view_requirements, existing_inputs
)
else:
# Placeholder for (sampling steps) timestep (int).
timestep = tf1.placeholder_with_default(
tf.zeros((), dtype=tf.int64), (), name="timestep"
)
# Placeholder for `is_exploring` flag.
explore = tf1.placeholder_with_default(True, (), name="is_exploring")
(
self._input_dict,
self._dummy_batch,
) = self._create_input_dict_and_dummy_batch(self.view_requirements, {})
# Placeholder for `is_training` flag.
self._input_dict.set_training(self._get_is_training_placeholder())
return timestep, explore
def _create_input_dict_and_dummy_batch(self, view_requirements, existing_inputs):
"""Creates input_dict and dummy_batch for loss initialization.
Used for managing the Policy's input placeholders and for loss
initialization.
Input_dict: Str -> tf.placeholders, dummy_batch: str -> np.arrays.
Args:
view_requirements (ViewReqs): The view requirements dict.
existing_inputs (Dict[str, tf.placeholder]): A dict of already
existing placeholders.
Returns:
Tuple[Dict[str, tf.placeholder], Dict[str, np.ndarray]]: The
input_dict/dummy_batch tuple.
"""
input_dict = {}
for view_col, view_req in view_requirements.items():
# Point state_in to the already existing self._state_inputs.
mo = re.match("state_in_(\d+)", view_col)
if mo is not None:
input_dict[view_col] = self._state_inputs[int(mo.group(1))]
# State-outs (no placeholders needed).
elif view_col.startswith("state_out_"):
continue
# Skip action dist inputs placeholder (do later).
elif view_col == SampleBatch.ACTION_DIST_INPUTS:
continue
# This is a tower: Input placeholders already exist.
elif view_col in existing_inputs:
input_dict[view_col] = existing_inputs[view_col]
# All others.
else:
time_axis = not isinstance(view_req.shift, int)
if view_req.used_for_training:
# Create a +time-axis placeholder if the shift is not an
# int (range or list of ints).
# Do not flatten actions if action flattening disabled.
if self.config.get("_disable_action_flattening") and view_col in [
SampleBatch.ACTIONS,
SampleBatch.PREV_ACTIONS,
]:
flatten = False
# Do not flatten observations if no preprocessor API used.
elif (
view_col in [SampleBatch.OBS, SampleBatch.NEXT_OBS]
and self.config["_disable_preprocessor_api"]
):
flatten = False
# Flatten everything else.
else:
flatten = True
input_dict[view_col] = get_placeholder(
space=view_req.space,
name=view_col,
time_axis=time_axis,
flatten=flatten,
)
dummy_batch = self._get_dummy_batch_from_view_requirements(batch_size=32)
return SampleBatch(input_dict, seq_lens=self._seq_lens), dummy_batch
def _init_action_fetches(
self, timestep: Union[int, TensorType], explore: Union[bool, TensorType]
) -> Tuple[TensorType, TensorType, TensorType, type, Dict[str, TensorType]]:
"""Create action related fields for base Policy and loss initialization."""
# Multi-GPU towers do not need any action computing/exploration
# graphs.
sampled_action = None
sampled_action_logp = None
dist_inputs = None
extra_action_fetches = {}
self._state_out = None
if not self._is_tower:
# Create the Exploration object to use for this Policy.
self.exploration = self._create_exploration()
# Fully customized action generation (e.g., custom policy).
if is_overridden(self.action_sampler_fn):
(
sampled_action,
sampled_action_logp,
dist_inputs,
self._state_out,
) = self.action_sampler_fn(
self.model,
obs_batch=self._input_dict[SampleBatch.CUR_OBS],
state_batches=self._state_inputs,
seq_lens=self._seq_lens,
prev_action_batch=self._input_dict.get(SampleBatch.PREV_ACTIONS),
prev_reward_batch=self._input_dict.get(SampleBatch.PREV_REWARDS),
explore=explore,
is_training=self._input_dict.is_training,
)
# Distribution generation is customized, e.g., DQN, DDPG.
else:
if is_overridden(self.action_distribution_fn):
# Try new action_distribution_fn signature, supporting
# state_batches and seq_lens.
in_dict = self._input_dict
(
dist_inputs,
self.dist_class,
self._state_out,
) = self.action_distribution_fn(
self.model,
input_dict=in_dict,
state_batches=self._state_inputs,
seq_lens=self._seq_lens,
explore=explore,
timestep=timestep,
is_training=in_dict.is_training,
)
# Default distribution generation behavior:
# Pass through model. E.g., PG, PPO.
else:
if isinstance(self.model, tf.keras.Model):
dist_inputs, self._state_out, extra_action_fetches = self.model(
self._input_dict
)
else:
dist_inputs, self._state_out = self.model(self._input_dict)
action_dist = self.dist_class(dist_inputs, self.model)
# Using exploration to get final action (e.g. via sampling).
(
sampled_action,
sampled_action_logp,
) = self.exploration.get_exploration_action(
action_distribution=action_dist, timestep=timestep, explore=explore
)
if dist_inputs is not None:
extra_action_fetches[SampleBatch.ACTION_DIST_INPUTS] = dist_inputs
if sampled_action_logp is not None:
extra_action_fetches[SampleBatch.ACTION_LOGP] = sampled_action_logp
extra_action_fetches[SampleBatch.ACTION_PROB] = tf.exp(
tf.cast(sampled_action_logp, tf.float32)
)
return (
sampled_action,
sampled_action_logp,
dist_inputs,
extra_action_fetches,
)
def _init_optimizers(self):
# Create the optimizer/exploration optimizer here. Some initialization
# steps (e.g. exploration postprocessing) may need this.
optimizers = force_list(self.optimizer())
if getattr(self, "exploration", None):
optimizers = self.exploration.get_exploration_optimizer(optimizers)
# No optimizers produced -> Return.
if not optimizers:
return
# The list of local (tf) optimizers (one per loss term).
self._optimizers = optimizers
# Backward compatibility.
self._optimizer = optimizers[0]
def maybe_initialize_optimizer_and_loss(self):
# We don't need to initialize loss calculation for MultiGPUTowerStack.
if self._is_tower:
return
# Loss initialization and model/postprocessing test calls.
self._init_optimizers()
self._initialize_loss_from_dummy_batch(auto_remove_unneeded_view_reqs=True)
# Create MultiGPUTowerStacks, if we have at least one actual
# GPU or >1 CPUs (fake GPUs).
if len(self.devices) > 1 or any("gpu" in d for d in self.devices):
# Per-GPU graph copies created here must share vars with the
# policy. Therefore, `reuse` is set to tf1.AUTO_REUSE because
# Adam nodes are created after all of the device copies are
# created.
with tf1.variable_scope("", reuse=tf1.AUTO_REUSE):
self.multi_gpu_tower_stacks = [
TFMultiGPUTowerStack(policy=self)
for _ in range(self.config.get("num_multi_gpu_tower_stacks", 1))
]
# Initialize again after loss and tower init.
self.get_session().run(tf1.global_variables_initializer())
@override(Policy)
def _initialize_loss_from_dummy_batch(
self, auto_remove_unneeded_view_reqs: bool = True
) -> None:
# Test calls depend on variable init, so initialize model first.
self.get_session().run(tf1.global_variables_initializer())
# Fields that have not been accessed are not needed for action
# computations -> Tag them as `used_for_compute_actions=False`.
for key, view_req in self.view_requirements.items():
if (
not key.startswith("state_in_")
and key not in self._input_dict.accessed_keys
):
view_req.used_for_compute_actions = False
for key, value in self.extra_action_out_fn().items():
self._dummy_batch[key] = get_dummy_batch_for_space(
gym.spaces.Box(
-1.0, 1.0, shape=value.shape.as_list()[1:], dtype=value.dtype.name
),
batch_size=len(self._dummy_batch),
)
self._input_dict[key] = get_placeholder(value=value, name=key)
if key not in self.view_requirements:
logger.info("Adding extra-action-fetch `{}` to view-reqs.".format(key))
self.view_requirements[key] = ViewRequirement(
space=gym.spaces.Box(
-1.0, 1.0, shape=value.shape[1:], dtype=value.dtype.name
),
used_for_compute_actions=False,
)
dummy_batch = self._dummy_batch
logger.info("Testing `postprocess_trajectory` w/ dummy batch.")
self.exploration.postprocess_trajectory(self, dummy_batch, self.get_session())
_ = self.postprocess_trajectory(dummy_batch)
# Add new columns automatically to (loss) input_dict.
for key in dummy_batch.added_keys:
if key not in self._input_dict:
self._input_dict[key] = get_placeholder(
value=dummy_batch[key], name=key
)
if key not in self.view_requirements:
self.view_requirements[key] = ViewRequirement(
space=gym.spaces.Box(
-1.0,
1.0,
shape=dummy_batch[key].shape[1:],
dtype=dummy_batch[key].dtype,
),
used_for_compute_actions=False,
)
train_batch = SampleBatch(
dict(self._input_dict, **self._loss_input_dict),
_is_training=True,
)
if self._state_inputs:
train_batch[SampleBatch.SEQ_LENS] = self._seq_lens
self._loss_input_dict.update(
{SampleBatch.SEQ_LENS: train_batch[SampleBatch.SEQ_LENS]}
)
self._loss_input_dict.update({k: v for k, v in train_batch.items()})
if log_once("loss_init"):
logger.debug(
"Initializing loss function with dummy input:\n\n{}\n".format(
summarize(train_batch)
)
)
losses = self._do_loss_init(train_batch)
all_accessed_keys = (
train_batch.accessed_keys
| dummy_batch.accessed_keys
| dummy_batch.added_keys
| set(self.model.view_requirements.keys())
)
TFPolicy._initialize_loss(
self,
losses,
[(k, v) for k, v in train_batch.items() if k in all_accessed_keys]
+ (
[(SampleBatch.SEQ_LENS, train_batch[SampleBatch.SEQ_LENS])]
if SampleBatch.SEQ_LENS in train_batch
else []
),
)
if "is_training" in self._loss_input_dict:
del self._loss_input_dict["is_training"]
# Call the grads stats fn.
# TODO: (sven) rename to simply stats_fn to match eager and torch.
self._stats_fetches.update(self.grad_stats_fn(train_batch, self._grads))
# Add new columns automatically to view-reqs.
if auto_remove_unneeded_view_reqs:
# Add those needed for postprocessing and training.
all_accessed_keys = train_batch.accessed_keys | dummy_batch.accessed_keys
# Tag those only needed for post-processing (with some exceptions).
for key in dummy_batch.accessed_keys:
if (
key not in train_batch.accessed_keys
and key not in self.model.view_requirements
and key
not in [
SampleBatch.EPS_ID,
SampleBatch.AGENT_INDEX,
SampleBatch.UNROLL_ID,
SampleBatch.DONES,
SampleBatch.REWARDS,
SampleBatch.INFOS,
SampleBatch.OBS_EMBEDS,
]
):
if key in self.view_requirements:
self.view_requirements[key].used_for_training = False
if key in self._loss_input_dict:
del self._loss_input_dict[key]
# Remove those not needed at all (leave those that are needed
# by Sampler to properly execute sample collection).
# Also always leave DONES, REWARDS, and INFOS, no matter what.
for key in list(self.view_requirements.keys()):
if (
key not in all_accessed_keys
and key
not in [
SampleBatch.EPS_ID,
SampleBatch.AGENT_INDEX,
SampleBatch.UNROLL_ID,
SampleBatch.DONES,
SampleBatch.REWARDS,
SampleBatch.INFOS,
]
and key not in self.model.view_requirements
):
# If user deleted this key manually in postprocessing
# fn, warn about it and do not remove from
# view-requirements.
if key in dummy_batch.deleted_keys:
logger.warning(
"SampleBatch key '{}' was deleted manually in "
"postprocessing function! RLlib will "
"automatically remove non-used items from the "
"data stream. Remove the `del` from your "
"postprocessing function.".format(key)
)
# If we are not writing output to disk, safe to erase
# this key to save space in the sample batch.
elif self.config["output"] is None:
del self.view_requirements[key]
if key in self._loss_input_dict:
del self._loss_input_dict[key]
# Add those data_cols (again) that are missing and have
# dependencies by view_cols.
for key in list(self.view_requirements.keys()):
vr = self.view_requirements[key]
if (
vr.data_col is not None
and vr.data_col not in self.view_requirements
):
used_for_training = vr.data_col in train_batch.accessed_keys
self.view_requirements[vr.data_col] = ViewRequirement(
space=vr.space, used_for_training=used_for_training
)
self._loss_input_dict_no_rnn = {
k: v
for k, v in self._loss_input_dict.items()
if (v not in self._state_inputs and v != self._seq_lens)
}
def _do_loss_init(self, train_batch: SampleBatch):
losses = self.loss(self.model, self.dist_class, train_batch)
losses = force_list(losses)
self._stats_fetches.update(self.stats_fn(train_batch))
# Override the update ops to be those of the model.
self._update_ops = []
if not isinstance(self.model, tf.keras.Model):
self._update_ops = self.model.update_ops()
return losses
@override(TFPolicy)
@DeveloperAPI
def copy(self, existing_inputs: List[Tuple[str, "tf1.placeholder"]]) -> TFPolicy:
"""Creates a copy of self using existing input placeholders."""
flat_loss_inputs = tree.flatten(self._loss_input_dict)
flat_loss_inputs_no_rnn = tree.flatten(self._loss_input_dict_no_rnn)
# Note that there might be RNN state inputs at the end of the list
if len(flat_loss_inputs) != len(existing_inputs):
raise ValueError(
"Tensor list mismatch",
self._loss_input_dict,
self._state_inputs,
existing_inputs,
)
for i, v in enumerate(flat_loss_inputs_no_rnn):
if v.shape.as_list() != existing_inputs[i].shape.as_list():
raise ValueError(
"Tensor shape mismatch", i, v.shape, existing_inputs[i].shape
)
# By convention, the loss inputs are followed by state inputs and then
# the seq len tensor.
rnn_inputs = []
for i in range(len(self._state_inputs)):
rnn_inputs.append(
(
"state_in_{}".format(i),
existing_inputs[len(flat_loss_inputs_no_rnn) + i],
)
)
if rnn_inputs:
rnn_inputs.append((SampleBatch.SEQ_LENS, existing_inputs[-1]))
existing_inputs_unflattened = tree.unflatten_as(
self._loss_input_dict_no_rnn,
existing_inputs[: len(flat_loss_inputs_no_rnn)],
)
input_dict = OrderedDict(
[("is_exploring", self._is_exploring), ("timestep", self._timestep)]
+ [
(k, existing_inputs_unflattened[k])
for i, k in enumerate(self._loss_input_dict_no_rnn.keys())
]
+ rnn_inputs
)
instance = self.__class__(
self.observation_space,
self.action_space,
self.config,
existing_inputs=input_dict,
existing_model=[
self.model,
# Deprecated: Target models should all reside under
# `policy.target_model` now.
("target_q_model", getattr(self, "target_q_model", None)),
("target_model", getattr(self, "target_model", None)),
],
)
instance._loss_input_dict = input_dict
losses = instance._do_loss_init(SampleBatch(input_dict))
loss_inputs = [
(k, existing_inputs_unflattened[k])
for i, k in enumerate(self._loss_input_dict_no_rnn.keys())
]
TFPolicy._initialize_loss(instance, losses, loss_inputs)
instance._stats_fetches.update(
instance.grad_stats_fn(input_dict, instance._grads)
)
return instance
@override(Policy)
@DeveloperAPI
def get_initial_state(self) -> List[TensorType]:
if self.model:
return self.model.get_initial_state()
else:
return []
@override(Policy)
@DeveloperAPI
def load_batch_into_buffer(
self,
batch: SampleBatch,
buffer_index: int = 0,
) -> int:
# Set the is_training flag of the batch.
batch.set_training(True)
# Shortcut for 1 CPU only: Store batch in
# `self._loaded_single_cpu_batch`.
if len(self.devices) == 1 and self.devices[0] == "/cpu:0":
assert buffer_index == 0
self._loaded_single_cpu_batch = batch
return len(batch)
input_dict = self._get_loss_inputs_dict(batch, shuffle=False)
data_keys = tree.flatten(self._loss_input_dict_no_rnn)
if self._state_inputs:
state_keys = self._state_inputs + [self._seq_lens]
else:
state_keys = []
inputs = [input_dict[k] for k in data_keys]
state_inputs = [input_dict[k] for k in state_keys]
return self.multi_gpu_tower_stacks[buffer_index].load_data(
sess=self.get_session(),
inputs=inputs,
state_inputs=state_inputs,
)
@override(Policy)
@DeveloperAPI
def get_num_samples_loaded_into_buffer(self, buffer_index: int = 0) -> int:
# Shortcut for 1 CPU only: Batch should already be stored in
# `self._loaded_single_cpu_batch`.
if len(self.devices) == 1 and self.devices[0] == "/cpu:0":
assert buffer_index == 0
return (
len(self._loaded_single_cpu_batch)
if self._loaded_single_cpu_batch is not None
else 0
)
return self.multi_gpu_tower_stacks[buffer_index].num_tuples_loaded
@override(Policy)
@DeveloperAPI
def learn_on_loaded_batch(self, offset: int = 0, buffer_index: int = 0):
# Shortcut for 1 CPU only: Batch should already be stored in
# `self._loaded_single_cpu_batch`.
if len(self.devices) == 1 and self.devices[0] == "/cpu:0":
assert buffer_index == 0
if self._loaded_single_cpu_batch is None:
raise ValueError(
"Must call Policy.load_batch_into_buffer() before "
"Policy.learn_on_loaded_batch()!"
)
# Get the correct slice of the already loaded batch to use,
# based on offset and batch size.
batch_size = self.config.get(
"sgd_minibatch_size", self.config["train_batch_size"]
)
if batch_size >= len(self._loaded_single_cpu_batch):
sliced_batch = self._loaded_single_cpu_batch
else:
sliced_batch = self._loaded_single_cpu_batch.slice(
start=offset, end=offset + batch_size
)
return self.learn_on_batch(sliced_batch)
return self.multi_gpu_tower_stacks[buffer_index].optimize(
self.get_session(), offset
)
@override(TFPolicy)
def gradients(self, optimizer, loss):
optimizers = force_list(optimizer)
losses = force_list(loss)
if is_overridden(self.compute_gradients_fn):
# New API: Allow more than one optimizer -> Return a list of
# lists of gradients.
if self.config["_tf_policy_handles_more_than_one_loss"]:
return self.compute_gradients_fn(optimizers, losses)
# Old API: Return a single List of gradients.
else:
return self.compute_gradients_fn(optimizers[0], losses[0])
else:
return super().gradients(self, optimizers, losses)