mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
429 lines
16 KiB
Python
429 lines
16 KiB
Python
import logging
|
|
|
|
import ray
|
|
from ray.rllib.agents.ppo.ppo_tf_policy import vf_preds_fetches, \
|
|
compute_and_clip_gradients, setup_config, ValueNetworkMixin
|
|
from ray.rllib.evaluation.postprocessing import compute_gae_for_sample_batch, \
|
|
Postprocessing
|
|
from ray.rllib.models.utils import get_activation_fn
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils import try_import_tf
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def PPOLoss(dist_class,
|
|
actions,
|
|
curr_logits,
|
|
behaviour_logits,
|
|
advantages,
|
|
value_fn,
|
|
value_targets,
|
|
vf_preds,
|
|
cur_kl_coeff,
|
|
entropy_coeff,
|
|
clip_param,
|
|
vf_clip_param,
|
|
vf_loss_coeff,
|
|
clip_loss=False):
|
|
def surrogate_loss(actions, curr_dist, prev_dist, advantages, clip_param,
|
|
clip_loss):
|
|
pi_new_logp = curr_dist.logp(actions)
|
|
pi_old_logp = prev_dist.logp(actions)
|
|
|
|
logp_ratio = tf.math.exp(pi_new_logp - pi_old_logp)
|
|
if clip_loss:
|
|
return tf.minimum(
|
|
advantages * logp_ratio,
|
|
advantages * tf.clip_by_value(logp_ratio, 1 - clip_param,
|
|
1 + clip_param))
|
|
return advantages * logp_ratio
|
|
|
|
def kl_loss(curr_dist, prev_dist):
|
|
return prev_dist.kl(curr_dist)
|
|
|
|
def entropy_loss(dist):
|
|
return dist.entropy()
|
|
|
|
def vf_loss(value_fn, value_targets, vf_preds, vf_clip_param=0.1):
|
|
# GAE Value Function Loss
|
|
vf_loss1 = tf.math.square(value_fn - value_targets)
|
|
vf_clipped = vf_preds + tf.clip_by_value(value_fn - vf_preds,
|
|
-vf_clip_param, vf_clip_param)
|
|
vf_loss2 = tf.math.square(vf_clipped - value_targets)
|
|
vf_loss = tf.maximum(vf_loss1, vf_loss2)
|
|
return vf_loss
|
|
|
|
pi_new_dist = dist_class(curr_logits, None)
|
|
pi_old_dist = dist_class(behaviour_logits, None)
|
|
|
|
surr_loss = tf.reduce_mean(
|
|
surrogate_loss(actions, pi_new_dist, pi_old_dist, advantages,
|
|
clip_param, clip_loss))
|
|
kl_loss = tf.reduce_mean(kl_loss(pi_new_dist, pi_old_dist))
|
|
vf_loss = tf.reduce_mean(
|
|
vf_loss(value_fn, value_targets, vf_preds, vf_clip_param))
|
|
entropy_loss = tf.reduce_mean(entropy_loss(pi_new_dist))
|
|
|
|
total_loss = -surr_loss + cur_kl_coeff * kl_loss
|
|
total_loss += vf_loss_coeff * vf_loss - entropy_coeff * entropy_loss
|
|
return total_loss, surr_loss, kl_loss, vf_loss, entropy_loss
|
|
|
|
|
|
# This is the computation graph for workers (inner adaptation steps)
|
|
class WorkerLoss(object):
|
|
def __init__(self,
|
|
dist_class,
|
|
actions,
|
|
curr_logits,
|
|
behaviour_logits,
|
|
advantages,
|
|
value_fn,
|
|
value_targets,
|
|
vf_preds,
|
|
cur_kl_coeff,
|
|
entropy_coeff,
|
|
clip_param,
|
|
vf_clip_param,
|
|
vf_loss_coeff,
|
|
clip_loss=False):
|
|
self.loss, surr_loss, kl_loss, vf_loss, ent_loss = PPOLoss(
|
|
dist_class=dist_class,
|
|
actions=actions,
|
|
curr_logits=curr_logits,
|
|
behaviour_logits=behaviour_logits,
|
|
advantages=advantages,
|
|
value_fn=value_fn,
|
|
value_targets=value_targets,
|
|
vf_preds=vf_preds,
|
|
cur_kl_coeff=cur_kl_coeff,
|
|
entropy_coeff=entropy_coeff,
|
|
clip_param=clip_param,
|
|
vf_clip_param=vf_clip_param,
|
|
vf_loss_coeff=vf_loss_coeff,
|
|
clip_loss=clip_loss)
|
|
self.loss = tf1.Print(self.loss, ["Worker Adapt Loss", self.loss])
|
|
|
|
|
|
# This is the Meta-Update computation graph for main (meta-update step)
|
|
class MAMLLoss(object):
|
|
def __init__(self,
|
|
model,
|
|
config,
|
|
dist_class,
|
|
value_targets,
|
|
advantages,
|
|
actions,
|
|
behaviour_logits,
|
|
vf_preds,
|
|
cur_kl_coeff,
|
|
policy_vars,
|
|
obs,
|
|
num_tasks,
|
|
split,
|
|
inner_adaptation_steps=1,
|
|
entropy_coeff=0,
|
|
clip_param=0.3,
|
|
vf_clip_param=0.1,
|
|
vf_loss_coeff=1.0,
|
|
use_gae=True):
|
|
|
|
self.config = config
|
|
self.num_tasks = num_tasks
|
|
self.inner_adaptation_steps = inner_adaptation_steps
|
|
self.clip_param = clip_param
|
|
self.dist_class = dist_class
|
|
self.cur_kl_coeff = cur_kl_coeff
|
|
|
|
# Split episode tensors into [inner_adaptation_steps+1, num_tasks, -1]
|
|
self.obs = self.split_placeholders(obs, split)
|
|
self.actions = self.split_placeholders(actions, split)
|
|
self.behaviour_logits = self.split_placeholders(
|
|
behaviour_logits, split)
|
|
self.advantages = self.split_placeholders(advantages, split)
|
|
self.value_targets = self.split_placeholders(value_targets, split)
|
|
self.vf_preds = self.split_placeholders(vf_preds, split)
|
|
|
|
# Construct name to tensor dictionary for easier indexing
|
|
self.policy_vars = {}
|
|
for var in policy_vars:
|
|
self.policy_vars[var.name] = var
|
|
|
|
# Calculate pi_new for PPO
|
|
pi_new_logits, current_policy_vars, value_fns = [], [], []
|
|
for i in range(self.num_tasks):
|
|
pi_new, value_fn = self.feed_forward(
|
|
self.obs[0][i],
|
|
self.policy_vars,
|
|
policy_config=config["model"])
|
|
pi_new_logits.append(pi_new)
|
|
value_fns.append(value_fn)
|
|
current_policy_vars.append(self.policy_vars)
|
|
|
|
inner_kls = []
|
|
inner_ppo_loss = []
|
|
|
|
# Recompute weights for inner-adaptation (same weights as workers)
|
|
for step in range(self.inner_adaptation_steps):
|
|
kls = []
|
|
for i in range(self.num_tasks):
|
|
# PPO Loss Function (only Surrogate)
|
|
ppo_loss, _, kl_loss, _, _ = PPOLoss(
|
|
dist_class=dist_class,
|
|
actions=self.actions[step][i],
|
|
curr_logits=pi_new_logits[i],
|
|
behaviour_logits=self.behaviour_logits[step][i],
|
|
advantages=self.advantages[step][i],
|
|
value_fn=value_fns[i],
|
|
value_targets=self.value_targets[step][i],
|
|
vf_preds=self.vf_preds[step][i],
|
|
cur_kl_coeff=0.0,
|
|
entropy_coeff=entropy_coeff,
|
|
clip_param=clip_param,
|
|
vf_clip_param=vf_clip_param,
|
|
vf_loss_coeff=vf_loss_coeff,
|
|
clip_loss=False)
|
|
adapted_policy_vars = self.compute_updated_variables(
|
|
ppo_loss, current_policy_vars[i])
|
|
pi_new_logits[i], value_fns[i] = self.feed_forward(
|
|
self.obs[step + 1][i],
|
|
adapted_policy_vars,
|
|
policy_config=config["model"])
|
|
current_policy_vars[i] = adapted_policy_vars
|
|
kls.append(kl_loss)
|
|
inner_ppo_loss.append(ppo_loss)
|
|
|
|
self.kls = kls
|
|
inner_kls.append(kls)
|
|
|
|
mean_inner_kl = tf.stack(
|
|
[tf.reduce_mean(tf.stack(inner_kl)) for inner_kl in inner_kls])
|
|
self.mean_inner_kl = mean_inner_kl
|
|
|
|
ppo_obj = []
|
|
for i in range(self.num_tasks):
|
|
ppo_loss, surr_loss, kl_loss, val_loss, entropy_loss = PPOLoss(
|
|
dist_class=dist_class,
|
|
actions=self.actions[self.inner_adaptation_steps][i],
|
|
curr_logits=pi_new_logits[i],
|
|
behaviour_logits=self.behaviour_logits[
|
|
self.inner_adaptation_steps][i],
|
|
advantages=self.advantages[self.inner_adaptation_steps][i],
|
|
value_fn=value_fns[i],
|
|
value_targets=self.value_targets[self.inner_adaptation_steps][
|
|
i],
|
|
vf_preds=self.vf_preds[self.inner_adaptation_steps][i],
|
|
cur_kl_coeff=0.0,
|
|
entropy_coeff=entropy_coeff,
|
|
clip_param=clip_param,
|
|
vf_clip_param=vf_clip_param,
|
|
vf_loss_coeff=vf_loss_coeff,
|
|
clip_loss=True)
|
|
ppo_obj.append(ppo_loss)
|
|
self.mean_policy_loss = surr_loss
|
|
self.mean_kl = kl_loss
|
|
self.mean_vf_loss = val_loss
|
|
self.mean_entropy = entropy_loss
|
|
self.inner_kl_loss = tf.reduce_mean(
|
|
tf.multiply(self.cur_kl_coeff, mean_inner_kl))
|
|
self.loss = tf.reduce_mean(tf.stack(ppo_obj,
|
|
axis=0)) + self.inner_kl_loss
|
|
self.loss = tf1.Print(
|
|
self.loss,
|
|
["Meta-Loss", self.loss, "Inner KL", self.mean_inner_kl])
|
|
|
|
def feed_forward(self, obs, policy_vars, policy_config):
|
|
# Hacky for now, reconstruct FC network with adapted weights
|
|
# @mluo: TODO for any network
|
|
def fc_network(inp, network_vars, hidden_nonlinearity,
|
|
output_nonlinearity, policy_config):
|
|
bias_added = False
|
|
x = inp
|
|
for name, param in network_vars.items():
|
|
if "kernel" in name:
|
|
x = tf.matmul(x, param)
|
|
elif "bias" in name:
|
|
x = tf.add(x, param)
|
|
bias_added = True
|
|
else:
|
|
raise NameError
|
|
|
|
if bias_added:
|
|
if "out" not in name:
|
|
x = hidden_nonlinearity(x)
|
|
elif "out" in name:
|
|
x = output_nonlinearity(x)
|
|
else:
|
|
raise NameError
|
|
bias_added = False
|
|
return x
|
|
|
|
policyn_vars = {}
|
|
valuen_vars = {}
|
|
log_std = None
|
|
for name, param in policy_vars.items():
|
|
if "value" in name:
|
|
valuen_vars[name] = param
|
|
elif "log_std" in name:
|
|
log_std = param
|
|
else:
|
|
policyn_vars[name] = param
|
|
|
|
output_nonlinearity = tf.identity
|
|
hidden_nonlinearity = get_activation_fn(
|
|
policy_config["fcnet_activation"])
|
|
|
|
pi_new_logits = fc_network(obs, policyn_vars, hidden_nonlinearity,
|
|
output_nonlinearity, policy_config)
|
|
if log_std is not None:
|
|
pi_new_logits = tf.concat(
|
|
[pi_new_logits, 0.0 * pi_new_logits + log_std], 1)
|
|
value_fn = fc_network(obs, valuen_vars, hidden_nonlinearity,
|
|
output_nonlinearity, policy_config)
|
|
|
|
return pi_new_logits, tf.reshape(value_fn, [-1])
|
|
|
|
def compute_updated_variables(self, loss, network_vars):
|
|
grad = tf.gradients(loss, list(network_vars.values()))
|
|
adapted_vars = {}
|
|
for i, tup in enumerate(network_vars.items()):
|
|
name, var = tup
|
|
if grad[i] is None:
|
|
adapted_vars[name] = var
|
|
else:
|
|
adapted_vars[name] = var - self.config["inner_lr"] * grad[i]
|
|
return adapted_vars
|
|
|
|
def split_placeholders(self, placeholder, split):
|
|
inner_placeholder_list = tf.split(
|
|
placeholder, tf.math.reduce_sum(split, axis=1), axis=0)
|
|
placeholder_list = []
|
|
for index, split_placeholder in enumerate(inner_placeholder_list):
|
|
placeholder_list.append(
|
|
tf.split(split_placeholder, split[index], axis=0))
|
|
return placeholder_list
|
|
|
|
|
|
def maml_loss(policy, model, dist_class, train_batch):
|
|
logits, state = model(train_batch)
|
|
policy.cur_lr = policy.config["lr"]
|
|
|
|
if policy.config["worker_index"]:
|
|
policy.loss_obj = WorkerLoss(
|
|
dist_class=dist_class,
|
|
actions=train_batch[SampleBatch.ACTIONS],
|
|
curr_logits=logits,
|
|
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
|
|
advantages=train_batch[Postprocessing.ADVANTAGES],
|
|
value_fn=model.value_function(),
|
|
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
|
|
vf_preds=train_batch[SampleBatch.VF_PREDS],
|
|
cur_kl_coeff=0.0,
|
|
entropy_coeff=policy.config["entropy_coeff"],
|
|
clip_param=policy.config["clip_param"],
|
|
vf_clip_param=policy.config["vf_clip_param"],
|
|
vf_loss_coeff=policy.config["vf_loss_coeff"],
|
|
clip_loss=False)
|
|
else:
|
|
policy.var_list = tf1.get_collection(tf1.GraphKeys.TRAINABLE_VARIABLES,
|
|
tf1.get_variable_scope().name)
|
|
policy.loss_obj = MAMLLoss(
|
|
model=model,
|
|
dist_class=dist_class,
|
|
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
|
|
advantages=train_batch[Postprocessing.ADVANTAGES],
|
|
actions=train_batch[SampleBatch.ACTIONS],
|
|
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
|
|
vf_preds=train_batch[SampleBatch.VF_PREDS],
|
|
cur_kl_coeff=policy.kl_coeff,
|
|
policy_vars=policy.var_list,
|
|
obs=train_batch[SampleBatch.CUR_OBS],
|
|
num_tasks=policy.config["num_workers"],
|
|
split=train_batch["split"],
|
|
config=policy.config,
|
|
inner_adaptation_steps=policy.config["inner_adaptation_steps"],
|
|
entropy_coeff=policy.config["entropy_coeff"],
|
|
clip_param=policy.config["clip_param"],
|
|
vf_clip_param=policy.config["vf_clip_param"],
|
|
vf_loss_coeff=policy.config["vf_loss_coeff"],
|
|
use_gae=policy.config["use_gae"])
|
|
|
|
return policy.loss_obj.loss
|
|
|
|
|
|
def maml_stats(policy, train_batch):
|
|
if policy.config["worker_index"]:
|
|
return {"worker_loss": policy.loss_obj.loss}
|
|
else:
|
|
return {
|
|
"cur_kl_coeff": tf.cast(policy.kl_coeff, tf.float64),
|
|
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
|
|
"total_loss": policy.loss_obj.loss,
|
|
"policy_loss": policy.loss_obj.mean_policy_loss,
|
|
"vf_loss": policy.loss_obj.mean_vf_loss,
|
|
"kl": policy.loss_obj.mean_kl,
|
|
"inner_kl": policy.loss_obj.mean_inner_kl,
|
|
"entropy": policy.loss_obj.mean_entropy,
|
|
}
|
|
|
|
|
|
class KLCoeffMixin:
|
|
def __init__(self, config):
|
|
self.kl_coeff_val = [config["kl_coeff"]
|
|
] * config["inner_adaptation_steps"]
|
|
self.kl_target = self.config["kl_target"]
|
|
self.kl_coeff = tf1.get_variable(
|
|
initializer=tf.keras.initializers.Constant(self.kl_coeff_val),
|
|
name="kl_coeff",
|
|
shape=(config["inner_adaptation_steps"]),
|
|
trainable=False,
|
|
dtype=tf.float32)
|
|
|
|
def update_kls(self, sampled_kls):
|
|
for i, kl in enumerate(sampled_kls):
|
|
if kl < self.kl_target / 1.5:
|
|
self.kl_coeff_val[i] *= 0.5
|
|
elif kl > 1.5 * self.kl_target:
|
|
self.kl_coeff_val[i] *= 2.0
|
|
print(self.kl_coeff_val)
|
|
self.kl_coeff.load(self.kl_coeff_val, session=self.get_session())
|
|
return self.kl_coeff_val
|
|
|
|
|
|
def maml_optimizer_fn(policy, config):
|
|
"""
|
|
Workers use simple SGD for inner adaptation
|
|
Meta-Policy uses Adam optimizer for meta-update
|
|
"""
|
|
if not config["worker_index"]:
|
|
return tf1.train.AdamOptimizer(learning_rate=config["lr"])
|
|
return tf1.train.GradientDescentOptimizer(learning_rate=config["inner_lr"])
|
|
|
|
|
|
def setup_mixins(policy, obs_space, action_space, config):
|
|
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
|
|
KLCoeffMixin.__init__(policy, config)
|
|
|
|
# Create the `split` placeholder.
|
|
policy._loss_input_dict["split"] = tf1.placeholder(
|
|
tf.int32,
|
|
name="Meta-Update-Splitting",
|
|
shape=(policy.config["inner_adaptation_steps"] + 1,
|
|
policy.config["num_workers"]))
|
|
|
|
|
|
MAMLTFPolicy = build_tf_policy(
|
|
name="MAMLTFPolicy",
|
|
get_default_config=lambda: ray.rllib.agents.maml.maml.DEFAULT_CONFIG,
|
|
loss_fn=maml_loss,
|
|
stats_fn=maml_stats,
|
|
optimizer_fn=maml_optimizer_fn,
|
|
extra_action_out_fn=vf_preds_fetches,
|
|
postprocess_fn=compute_gae_for_sample_batch,
|
|
compute_gradients_fn=compute_and_clip_gradients,
|
|
before_init=setup_config,
|
|
before_loss_init=setup_mixins,
|
|
mixins=[KLCoeffMixin])
|