ray/rllib/models/tests/test_attention_nets.py

131 lines
4.4 KiB
Python

from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
import unittest
import ray
from ray import tune
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.tf.attention_net import GTrXLNet
from ray.rllib.utils.test_utils import framework_iterator
class TestAttentionNets(unittest.TestCase):
config = {
"env": StatelessCartPole,
"gamma": 0.99,
"num_envs_per_worker": 20,
"framework": "tf",
}
stop = {
"episode_reward_mean": 150.0,
"timesteps_total": 5000000,
}
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=5)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_attention_nets_w_prev_actions_and_prev_rewards(self):
"""Tests attention prev-a/r input insertions using complex actions."""
config = {
"env": RandomEnv,
"env_config": {
"config": {
"action_space": Dict({
"a": Box(-1.0, 1.0, ()),
"b": Box(-1.0, 1.0, (2, )),
"c": Tuple([
Discrete(2),
MultiDiscrete([2, 3]),
Box(-1.0, 1.0, (3, )),
]),
}),
},
},
# Need to set this to True to enable complex (prev.) actions
# as inputs to the attention net.
"_disable_action_flattening": True,
"model": {
"fcnet_hiddens": [10],
"use_attention": True,
"attention_dim": 16,
"attention_use_n_prev_actions": 3,
"attention_use_n_prev_rewards": 2,
},
"num_sgd_iter": 1,
"train_batch_size": 200,
"sgd_minibatch_size": 50,
"rollout_fragment_length": 100,
"num_workers": 1,
}
for _ in framework_iterator(config):
tune.run(
"PPO",
config=config,
stop={"training_iteration": 1},
verbose=1)
def test_ppo_attention_net_learning(self):
ModelCatalog.register_custom_model("attention_net", GTrXLNet)
config = dict(
self.config, **{
"num_workers": 0,
"entropy_coeff": 0.001,
"vf_loss_coeff": 1e-5,
"num_sgd_iter": 5,
"model": {
"custom_model": "attention_net",
"max_seq_len": 10,
"custom_model_config": {
"num_transformer_units": 1,
"attention_dim": 32,
"num_heads": 1,
"memory_inference": 5,
"memory_training": 5,
"head_dim": 32,
"position_wise_mlp_dim": 32,
},
},
})
tune.run("PPO", config=config, stop=self.stop, verbose=1)
# TODO: (sven) causes memory failures/timeouts on Travis.
# Re-enable this once we have fast attention in master branch.
def test_impala_attention_net_learning(self):
return
# ModelCatalog.register_custom_model("attention_net", GTrXLNet)
# config = dict(
# self.config, **{
# "num_workers": 4,
# "num_gpus": 0,
# "entropy_coeff": 0.01,
# "vf_loss_coeff": 0.001,
# "lr": 0.0008,
# "model": {
# "custom_model": "attention_net",
# "max_seq_len": 65,
# "custom_model_config": {
# "num_transformer_units": 1,
# "attention_dim": 64,
# "num_heads": 1,
# "memory_inference": 10,
# "memory_training": 10,
# "head_dim": 32,
# "position_wise_mlp_dim": 32,
# },
# },
# })
# tune.run("IMPALA", config=config, stop=self.stop, verbose=1)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))