ray/rllib/utils/exploration/epsilon_greedy.py

172 lines
6.9 KiB
Python

import numpy as np
from typing import Union, Optional
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration, TensorType
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
get_variable
from ray.rllib.utils.from_config import from_config
from ray.rllib.utils.schedules import Schedule, PiecewiseSchedule
from ray.rllib.utils.torch_ops import FLOAT_MIN
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
class EpsilonGreedy(Exploration):
"""Epsilon-greedy Exploration class that produces exploration actions.
When given a Model's output and a current epsilon value (based on some
Schedule), it produces a random action (if rand(1) < eps) or
uses the model-computed one (if rand(1) >= eps).
"""
def __init__(self,
action_space,
*,
framework: str,
initial_epsilon: float = 1.0,
final_epsilon: float = 0.05,
epsilon_timesteps: int = int(1e5),
epsilon_schedule: Optional[Schedule] = None,
**kwargs):
"""Create an EpsilonGreedy exploration class.
Args:
initial_epsilon (float): The initial epsilon value to use.
final_epsilon (float): The final epsilon value to use.
epsilon_timesteps (int): The time step after which epsilon should
always be `final_epsilon`.
epsilon_schedule (Optional[Schedule]): An optional Schedule object
to use (instead of constructing one from the given parameters).
"""
assert framework is not None
super().__init__(
action_space=action_space, framework=framework, **kwargs)
self.epsilon_schedule = \
from_config(Schedule, epsilon_schedule, framework=framework) or \
PiecewiseSchedule(
endpoints=[
(0, initial_epsilon), (epsilon_timesteps, final_epsilon)],
outside_value=final_epsilon,
framework=self.framework)
# The current timestep value (tf-var or python int).
self.last_timestep = get_variable(
np.array(0, np.int64),
framework=framework,
tf_name="timestep",
dtype=np.int64)
# Build the tf-info-op.
if self.framework in ["tf2", "tf", "tfe"]:
self._tf_info_op = self.get_info()
@override(Exploration)
def get_exploration_action(self,
*,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True):
q_values = action_distribution.inputs
if self.framework in ["tf2", "tf", "tfe"]:
return self._get_tf_exploration_action_op(q_values, explore,
timestep)
else:
return self._get_torch_exploration_action(q_values, explore,
timestep)
def _get_tf_exploration_action_op(self, q_values: TensorType,
explore: Union[bool, TensorType],
timestep: Union[int, TensorType]):
"""TF method to produce the tf op for an epsilon exploration action.
Args:
q_values (Tensor): The Q-values coming from some q-model.
Returns:
tf.Tensor: The tf exploration-action op.
"""
epsilon = self.epsilon_schedule(timestep if timestep is not None else
self.last_timestep)
# Get the exploit action as the one with the highest logit value.
exploit_action = tf.argmax(q_values, axis=1)
batch_size = tf.shape(q_values)[0]
# Mask out actions with q-value=-inf so that we don't even consider
# them for exploration.
random_valid_action_logits = tf.where(
tf.equal(q_values, tf.float32.min),
tf.ones_like(q_values) * tf.float32.min, tf.ones_like(q_values))
random_actions = tf.squeeze(
tf.random.categorical(random_valid_action_logits, 1), axis=1)
chose_random = tf.random.uniform(
tf.stack([batch_size]), minval=0, maxval=1,
dtype=tf.float32) < epsilon
action = tf.cond(
pred=tf.constant(explore, dtype=tf.bool)
if isinstance(explore, bool) else explore,
true_fn=(
lambda: tf.where(chose_random, random_actions, exploit_action)
),
false_fn=lambda: exploit_action)
if self.framework in ["tf2", "tfe"]:
self.last_timestep = timestep
return action, tf.zeros_like(action, dtype=tf.float32)
else:
assign_op = tf1.assign(self.last_timestep, timestep)
with tf1.control_dependencies([assign_op]):
return action, tf.zeros_like(action, dtype=tf.float32)
def _get_torch_exploration_action(self, q_values: TensorType,
explore: bool,
timestep: Union[int, TensorType]):
"""Torch method to produce an epsilon exploration action.
Args:
q_values (Tensor): The Q-values coming from some Q-model.
Returns:
torch.Tensor: The exploration-action.
"""
self.last_timestep = timestep
_, exploit_action = torch.max(q_values, 1)
action_logp = torch.zeros_like(exploit_action)
# Explore.
if explore:
# Get the current epsilon.
epsilon = self.epsilon_schedule(self.last_timestep)
batch_size = q_values.size()[0]
# Mask out actions, whose Q-values are -inf, so that we don't
# even consider them for exploration.
random_valid_action_logits = torch.where(
q_values <= FLOAT_MIN,
torch.ones_like(q_values) * 0.0, torch.ones_like(q_values))
# A random action.
random_actions = torch.squeeze(
torch.multinomial(random_valid_action_logits, 1), axis=1)
# Pick either random or greedy.
action = torch.where(
torch.empty(
(batch_size, )).uniform_().to(self.device) < epsilon,
random_actions, exploit_action)
return action, action_logp
# Return the deterministic "sample" (argmax) over the logits.
else:
return exploit_action, action_logp
@override(Exploration)
def get_info(self, sess: Optional["tf.Session"] = None):
if sess:
return sess.run(self._tf_info_op)
eps = self.epsilon_schedule(self.last_timestep)
return {"cur_epsilon": eps}