ray/rllib/algorithms/ars/ars.py

582 lines
21 KiB
Python

# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter and from
# https://github.com/modestyachts/ARS
from collections import namedtuple
import logging
import numpy as np
import random
import time
from typing import Optional
import ray
from ray.rllib.algorithms import Algorithm, AlgorithmConfig
from ray.rllib.algorithms.ars.ars_tf_policy import ARSTFPolicy
from ray.rllib.algorithms.es import optimizers, utils
from ray.rllib.algorithms.es.es_tf_policy import rollout
from ray.rllib.env.env_context import EnvContext
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils import FilterManager
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import Deprecated
from ray.rllib.utils.metrics import (
NUM_AGENT_STEPS_SAMPLED,
NUM_AGENT_STEPS_TRAINED,
NUM_ENV_STEPS_SAMPLED,
NUM_ENV_STEPS_TRAINED,
)
from ray.rllib.utils.torch_utils import set_torch_seed
from ray.rllib.utils.typing import AlgorithmConfigDict
logger = logging.getLogger(__name__)
Result = namedtuple(
"Result",
[
"noise_indices",
"noisy_returns",
"sign_noisy_returns",
"noisy_lengths",
"eval_returns",
"eval_lengths",
],
)
class ARSConfig(AlgorithmConfig):
"""Defines a configuration class from which an ARS Algorithm can be built.
Example:
>>> from ray.rllib.algorithms.ars import ARSConfig
>>> config = ARSConfig().training(sgd_stepsize=0.02, report_length=20)\
... .resources(num_gpus=0)\
... .rollouts(num_rollout_workers=4)
>>> print(config.to_dict())
>>> # Build a Algorithm object from the config and run 1 training iteration.
>>> trainer = config.build(env="CartPole-v1")
>>> trainer.train()
Example:
>>> from ray.rllib.algorithms.ars import ARSConfig
>>> from ray import tune
>>> config = ARSConfig()
>>> # Print out some default values.
>>> print(config.action_noise_std)
>>> # Update the config object.
>>> config.training(rollouts_used=tune.grid_search([32, 64]), eval_prob=0.5)
>>> # Set the config object's env.
>>> config.environment(env="CartPole-v1")
>>> # Use to_dict() to get the old-style python config dict
>>> # when running with tune.
>>> tune.run(
... "ARS",
... stop={"episode_reward_mean": 200},
... config=config.to_dict(),
... )
"""
def __init__(self):
"""Initializes a ARSConfig instance."""
super().__init__(algo_class=ARS)
# fmt: off
# __sphinx_doc_begin__
# ARS specific settings:
self.action_noise_std = 0.0
self.noise_stdev = 0.02
self.num_rollouts = 32
self.rollouts_used = 32
self.sgd_stepsize = 0.01
self.noise_size = 250000000
self.eval_prob = 0.03
self.report_length = 10
self.offset = 0
# Override some of AlgorithmConfig's default values with ARS-specific values.
self.num_workers = 2
self.observation_filter = "MeanStdFilter"
# ARS will use Algorithm's evaluation WorkerSet (if evaluation_interval > 0).
# Therefore, we must be careful not to use more than 1 env per eval worker
# (would break ARSPolicy's compute_single_action method) and to not do
# obs-filtering.
self.evaluation_config["num_envs_per_worker"] = 1
self.evaluation_config["observation_filter"] = "NoFilter"
# __sphinx_doc_end__
# fmt: on
@override(AlgorithmConfig)
def training(
self,
*,
action_noise_std: Optional[float] = None,
noise_stdev: Optional[float] = None,
num_rollouts: Optional[int] = None,
rollouts_used: Optional[int] = None,
sgd_stepsize: Optional[float] = None,
noise_size: Optional[int] = None,
eval_prob: Optional[float] = None,
report_length: Optional[int] = None,
offset: Optional[int] = None,
**kwargs,
) -> "ARSConfig":
"""Sets the training related configuration.
Args:
action_noise_std: Std. deviation to be used when adding (standard normal)
noise to computed actions. Action noise is only added, if
`compute_actions` is called with the `add_noise` arg set to True.
noise_stdev: Std. deviation of parameter noise.
num_rollouts: Number of perturbs to try.
rollouts_used: Number of perturbs to keep in gradient estimate.
sgd_stepsize: SGD step-size used for the Adam optimizer.
noise_size: Number of rows in the noise table (shared across workers).
Each row contains a gaussian noise value for each model parameter.
eval_prob: Probability of evaluating the parameter rewards.
report_length: How many of the last rewards we average over.
offset: Value to subtract from the reward (e.g. survival bonus
from humanoid) during rollouts.
Returns:
This updated AlgorithmConfig object.
"""
# Pass kwargs onto super's `training()` method.
super().training(**kwargs)
if action_noise_std is not None:
self.action_noise_std = action_noise_std
if noise_stdev is not None:
self.noise_stdev = noise_stdev
if num_rollouts is not None:
self.num_rollouts = num_rollouts
if rollouts_used is not None:
self.rollouts_used = rollouts_used
if sgd_stepsize is not None:
self.sgd_stepsize = sgd_stepsize
if noise_size is not None:
self.noise_size = noise_size
if eval_prob is not None:
self.eval_prob = eval_prob
if report_length is not None:
self.report_length = report_length
if offset is not None:
self.offset = offset
return self
@ray.remote
def create_shared_noise(count):
"""Create a large array of noise to be shared by all workers."""
seed = 123
noise = np.random.RandomState(seed).randn(count).astype(np.float32)
return noise
class SharedNoiseTable:
def __init__(self, noise):
self.noise = noise
assert self.noise.dtype == np.float32
def get(self, i, dim):
return self.noise[i : i + dim]
def sample_index(self, dim):
return np.random.randint(0, len(self.noise) - dim + 1)
def get_delta(self, dim):
idx = self.sample_index(dim)
return idx, self.get(idx, dim)
@ray.remote
class Worker:
def __init__(self, config, env_creator, noise, worker_index, min_task_runtime=0.2):
# Set Python random, numpy, env, and torch/tf seeds.
seed = config.get("seed")
if seed is not None:
# Python random module.
random.seed(seed)
# Numpy.
np.random.seed(seed)
# Torch.
if config.get("framework") == "torch":
set_torch_seed(seed)
self.min_task_runtime = min_task_runtime
self.config = config
self.config["single_threaded"] = True
self.noise = SharedNoiseTable(noise)
env_context = EnvContext(config["env_config"] or {}, worker_index)
self.env = env_creator(env_context)
# Seed the env, if gym.Env.
if not hasattr(self.env, "seed"):
logger.info("Env doesn't support env.seed(): {}".format(self.env))
# Gym.env.
else:
self.env.seed(seed)
from ray.rllib import models
self.preprocessor = models.ModelCatalog.get_preprocessor(self.env)
policy_cls = get_policy_class(config)
self.policy = policy_cls(
self.env.observation_space, self.env.action_space, config
)
@property
def filters(self):
return {DEFAULT_POLICY_ID: self.policy.observation_filter}
def sync_filters(self, new_filters):
for k in self.filters:
self.filters[k].sync(new_filters[k])
def get_filters(self, flush_after=False):
return_filters = {}
for k, f in self.filters.items():
return_filters[k] = f.as_serializable()
if flush_after:
f.reset_buffer()
return return_filters
def rollout(self, timestep_limit, add_noise=False):
rollout_rewards, rollout_fragment_length = rollout(
self.policy,
self.env,
timestep_limit=timestep_limit,
add_noise=add_noise,
offset=self.config["offset"],
)
return rollout_rewards, rollout_fragment_length
def do_rollouts(self, params, timestep_limit=None):
# Set the network weights.
self.policy.set_flat_weights(params)
noise_indices, returns, sign_returns, lengths = [], [], [], []
eval_returns, eval_lengths = [], []
# Perform some rollouts with noise.
while len(noise_indices) == 0:
if np.random.uniform() < self.config["eval_prob"]:
# Do an evaluation run with no perturbation.
self.policy.set_flat_weights(params)
rewards, length = self.rollout(timestep_limit, add_noise=False)
eval_returns.append(rewards.sum())
eval_lengths.append(length)
else:
# Do a regular run with parameter perturbations.
noise_index = self.noise.sample_index(self.policy.num_params)
perturbation = self.config["noise_stdev"] * self.noise.get(
noise_index, self.policy.num_params
)
# These two sampling steps could be done in parallel on
# different actors letting us update twice as frequently.
self.policy.set_flat_weights(params + perturbation)
rewards_pos, lengths_pos = self.rollout(timestep_limit)
self.policy.set_flat_weights(params - perturbation)
rewards_neg, lengths_neg = self.rollout(timestep_limit)
noise_indices.append(noise_index)
returns.append([rewards_pos.sum(), rewards_neg.sum()])
sign_returns.append(
[np.sign(rewards_pos).sum(), np.sign(rewards_neg).sum()]
)
lengths.append([lengths_pos, lengths_neg])
return Result(
noise_indices=noise_indices,
noisy_returns=returns,
sign_noisy_returns=sign_returns,
noisy_lengths=lengths,
eval_returns=eval_returns,
eval_lengths=eval_lengths,
)
def get_policy_class(config):
if config["framework"] == "torch":
from ray.rllib.algorithms.ars.ars_torch_policy import ARSTorchPolicy
policy_cls = ARSTorchPolicy
else:
policy_cls = ARSTFPolicy
return policy_cls
class ARS(Algorithm):
"""Large-scale implementation of Augmented Random Search in Ray."""
@classmethod
@override(Algorithm)
def get_default_config(cls) -> AlgorithmConfigDict:
return ARSConfig().to_dict()
@override(Algorithm)
def validate_config(self, config: AlgorithmConfigDict) -> None:
# Call super's validation method.
super().validate_config(config)
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for ARS!")
if config["num_workers"] <= 0:
raise ValueError("`num_workers` must be > 0 for ARS!")
if config["evaluation_config"]["num_envs_per_worker"] != 1:
raise ValueError(
"`evaluation_config.num_envs_per_worker` must always be 1 for "
"ARS! To parallelize evaluation, increase "
"`evaluation_num_workers` to > 1."
)
if config["evaluation_config"]["observation_filter"] != "NoFilter":
raise ValueError(
"`evaluation_config.observation_filter` must always be "
"`NoFilter` for ARS!"
)
@override(Algorithm)
def setup(self, config):
# Setup our config: Merge the user-supplied config (which could
# be a partial config dict with the class' default).
if isinstance(config, dict):
self.config = self.merge_trainer_configs(
self.get_default_config(), config, self._allow_unknown_configs
)
else:
self.config = config.to_dict()
# Validate our config dict.
self.validate_config(self.config)
# Generate the local env.
env_context = EnvContext(self.config["env_config"] or {}, worker_index=0)
env = self.env_creator(env_context)
self.callbacks = self.config["callbacks"]()
self._policy_class = get_policy_class(self.config)
self.policy = self._policy_class(
env.observation_space, env.action_space, self.config
)
self.optimizer = optimizers.SGD(self.policy, self.config["sgd_stepsize"])
self.rollouts_used = self.config["rollouts_used"]
self.num_rollouts = self.config["num_rollouts"]
self.report_length = self.config["report_length"]
# Create the shared noise table.
logger.info("Creating shared noise table.")
noise_id = create_shared_noise.remote(self.config["noise_size"])
self.noise = SharedNoiseTable(ray.get(noise_id))
# Create the actors.
logger.info("Creating actors.")
self.workers = [
Worker.remote(self.config, self.env_creator, noise_id, idx + 1)
for idx in range(self.config["num_workers"])
]
self.episodes_so_far = 0
self.reward_list = []
self.tstart = time.time()
@override(Algorithm)
def get_policy(self, policy=DEFAULT_POLICY_ID):
if policy != DEFAULT_POLICY_ID:
raise ValueError(
"ARS has no policy '{}'! Use {} "
"instead.".format(policy, DEFAULT_POLICY_ID)
)
return self.policy
@override(Algorithm)
def step(self):
config = self.config
theta = self.policy.get_flat_weights()
assert theta.dtype == np.float32
assert len(theta.shape) == 1
# Put the current policy weights in the object store.
theta_id = ray.put(theta)
# Use the actors to do rollouts, note that we pass in the ID of the
# policy weights.
results, num_episodes, num_timesteps = self._collect_results(
theta_id, config["num_rollouts"]
)
# Update our sample steps counters.
self._counters[NUM_AGENT_STEPS_SAMPLED] += num_timesteps
self._counters[NUM_ENV_STEPS_SAMPLED] += num_timesteps
all_noise_indices = []
all_training_returns = []
all_training_lengths = []
all_eval_returns = []
all_eval_lengths = []
# Loop over the results.
for result in results:
all_eval_returns += result.eval_returns
all_eval_lengths += result.eval_lengths
all_noise_indices += result.noise_indices
all_training_returns += result.noisy_returns
all_training_lengths += result.noisy_lengths
assert len(all_eval_returns) == len(all_eval_lengths)
assert (
len(all_noise_indices)
== len(all_training_returns)
== len(all_training_lengths)
)
self.episodes_so_far += num_episodes
# Assemble the results.
eval_returns = np.array(all_eval_returns)
eval_lengths = np.array(all_eval_lengths)
noise_indices = np.array(all_noise_indices)
noisy_returns = np.array(all_training_returns)
noisy_lengths = np.array(all_training_lengths)
# keep only the best returns
# select top performing directions if rollouts_used < num_rollouts
max_rewards = np.max(noisy_returns, axis=1)
if self.rollouts_used > self.num_rollouts:
self.rollouts_used = self.num_rollouts
percentile = 100 * (1 - (self.rollouts_used / self.num_rollouts))
idx = np.arange(max_rewards.size)[
max_rewards >= np.percentile(max_rewards, percentile)
]
noise_idx = noise_indices[idx]
noisy_returns = noisy_returns[idx, :]
# Compute and take a step.
g, count = utils.batched_weighted_sum(
noisy_returns[:, 0] - noisy_returns[:, 1],
(self.noise.get(index, self.policy.num_params) for index in noise_idx),
batch_size=min(500, noisy_returns[:, 0].size),
)
g /= noise_idx.size
# scale the returns by their standard deviation
if not np.isclose(np.std(noisy_returns), 0.0):
g /= np.std(noisy_returns)
assert g.shape == (self.policy.num_params,) and g.dtype == np.float32
# Compute the new weights theta.
theta, update_ratio = self.optimizer.update(-g)
# Update our train steps counters.
self._counters[NUM_AGENT_STEPS_TRAINED] += num_timesteps
self._counters[NUM_ENV_STEPS_TRAINED] += num_timesteps
# Set the new weights in the local copy of the policy.
self.policy.set_flat_weights(theta)
# update the reward list
if len(all_eval_returns) > 0:
self.reward_list.append(eval_returns.mean())
# Now sync the filters
FilterManager.synchronize(
{DEFAULT_POLICY_ID: self.policy.observation_filter}, self.workers
)
info = {
"weights_norm": np.square(theta).sum(),
"weights_std": np.std(theta),
"grad_norm": np.square(g).sum(),
"update_ratio": update_ratio,
"episodes_this_iter": noisy_lengths.size,
"episodes_so_far": self.episodes_so_far,
}
result = dict(
episode_reward_mean=np.mean(self.reward_list[-self.report_length :]),
episode_len_mean=eval_lengths.mean(),
timesteps_this_iter=noisy_lengths.sum(),
info=info,
)
return result
@override(Algorithm)
def cleanup(self):
# workaround for https://github.com/ray-project/ray/issues/1516
for w in self.workers:
w.__ray_terminate__.remote()
@override(Algorithm)
def compute_single_action(self, observation, *args, **kwargs):
action, _, _ = self.policy.compute_actions([observation], update=True)
if kwargs.get("full_fetch"):
return action[0], [], {}
return action[0]
@override(Algorithm)
def _sync_weights_to_workers(self, *, worker_set=None, workers=None):
# Broadcast the new policy weights to all evaluation workers.
assert worker_set is not None
logger.info("Synchronizing weights to evaluation workers.")
weights = ray.put(self.policy.get_flat_weights())
worker_set.foreach_policy(lambda p, pid: p.set_flat_weights(ray.get(weights)))
def _collect_results(self, theta_id, min_episodes):
num_episodes, num_timesteps = 0, 0
results = []
while num_episodes < min_episodes:
logger.debug(
"Collected {} episodes {} timesteps so far this iter".format(
num_episodes, num_timesteps
)
)
rollout_ids = [
worker.do_rollouts.remote(theta_id) for worker in self.workers
]
# Get the results of the rollouts.
for result in ray.get(rollout_ids):
results.append(result)
# Update the number of episodes and the number of timesteps
# keeping in mind that result.noisy_lengths is a list of lists,
# where the inner lists have length 2.
num_episodes += sum(len(pair) for pair in result.noisy_lengths)
num_timesteps += sum(sum(pair) for pair in result.noisy_lengths)
return results, num_episodes, num_timesteps
def __getstate__(self):
return {
"weights": self.policy.get_flat_weights(),
"filter": self.policy.observation_filter,
"episodes_so_far": self.episodes_so_far,
}
def __setstate__(self, state):
self.episodes_so_far = state["episodes_so_far"]
self.policy.set_flat_weights(state["weights"])
self.policy.observation_filter = state["filter"]
FilterManager.synchronize(
{DEFAULT_POLICY_ID: self.policy.observation_filter}, self.workers
)
# Deprecated: Use ray.rllib.algorithms.ars.ARSConfig instead!
class _deprecated_default_config(dict):
def __init__(self):
super().__init__(ARSConfig().to_dict())
@Deprecated(
old="ray.rllib.algorithms.ars.ars.DEFAULT_CONFIG",
new="ray.rllib.algorithms.ars.ars.ARSConfig(...)",
error=False,
)
def __getitem__(self, item):
return super().__getitem__(item)
DEFAULT_CONFIG = _deprecated_default_config()