ray/rllib/examples/two_step_game.py

160 lines
4.7 KiB
Python

"""The two-step game from QMIX: https://arxiv.org/pdf/1803.11485.pdf
Configurations you can try:
- normal policy gradients (PG)
- contrib/MADDPG
- QMIX
See also: centralized_critic.py for centralized critic PPO on this game.
"""
import argparse
from gym.spaces import Dict, Discrete, Tuple, MultiDiscrete
import os
import ray
from ray import tune
from ray.tune import register_env
from ray.rllib.env.multi_agent_env import ENV_STATE
from ray.rllib.examples.env.two_step_game import TwoStepGame
from ray.rllib.policy.policy import PolicySpec
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PG",
help="The RLlib-registered algorithm to use.")
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument(
"--mixer",
type=str,
default="qmix",
choices=["qmix", "vdn", "none"],
help="The mixer model to use.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=200,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=70000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=8.0,
help="Reward at which we stop training.")
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.")
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
grouping = {
"group_1": [0, 1],
}
obs_space = Tuple([
Dict({
"obs": MultiDiscrete([2, 2, 2, 3]),
ENV_STATE: MultiDiscrete([2, 2, 2])
}),
Dict({
"obs": MultiDiscrete([2, 2, 2, 3]),
ENV_STATE: MultiDiscrete([2, 2, 2])
}),
])
act_space = Tuple([
TwoStepGame.action_space,
TwoStepGame.action_space,
])
register_env(
"grouped_twostep",
lambda config: TwoStepGame(config).with_agent_groups(
grouping, obs_space=obs_space, act_space=act_space))
if args.run == "contrib/MADDPG":
obs_space = Discrete(6)
act_space = TwoStepGame.action_space
config = {
"learning_starts": 100,
"env_config": {
"actions_are_logits": True,
},
"multiagent": {
"policies": {
"pol1": PolicySpec(
observation_space=obs_space,
action_space=act_space,
config={"agent_id": 0}),
"pol2": PolicySpec(
observation_space=obs_space,
action_space=act_space,
config={"agent_id": 1}),
},
"policy_mapping_fn": (
lambda aid, **kwargs: "pol2" if aid else "pol1"),
},
"framework": args.framework,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
}
group = False
elif args.run == "QMIX":
config = {
"rollout_fragment_length": 4,
"train_batch_size": 32,
"exploration_config": {
"final_epsilon": 0.0,
},
"num_workers": 0,
"mixer": args.mixer,
"env_config": {
"separate_state_space": True,
"one_hot_state_encoding": True
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
}
group = True
else:
config = {
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
}
group = False
stop = {
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
"training_iteration": args.stop_iters,
}
config = dict(config, **{
"env": "grouped_twostep" if group else TwoStepGame,
})
results = tune.run(args.run, stop=stop, config=config, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()