ray/rllib/utils/numpy.py

561 lines
18 KiB
Python

from collections import OrderedDict
from gym.spaces import Discrete, MultiDiscrete
import numpy as np
import tree # pip install dm_tree
from types import MappingProxyType
from typing import List, Optional
from ray.rllib.utils.annotations import PublicAPI
from ray.rllib.utils.deprecation import DEPRECATED_VALUE, deprecation_warning
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.typing import SpaceStruct, TensorType, TensorStructType, Union
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
SMALL_NUMBER = 1e-6
# Some large int number. May be increased here, if needed.
LARGE_INTEGER = 100000000
# Min and Max outputs (clipped) from an NN-output layer interpreted as the
# log(x) of some x (e.g. a stddev of a normal
# distribution).
MIN_LOG_NN_OUTPUT = -5
MAX_LOG_NN_OUTPUT = 2
@PublicAPI
def aligned_array(size: int, dtype, align: int = 64) -> np.ndarray:
"""Returns an array of a given size that is 64-byte aligned.
The returned array can be efficiently copied into GPU memory by TensorFlow.
Args:
size: The size (total number of items) of the array. For example,
array([[0.0, 1.0], [2.0, 3.0]]) would have size=4.
dtype: The numpy dtype of the array.
align: The alignment to use.
Returns:
A np.ndarray with the given specifications.
"""
n = size * dtype.itemsize
empty = np.empty(n + (align - 1), dtype=np.uint8)
data_align = empty.ctypes.data % align
offset = 0 if data_align == 0 else (align - data_align)
if n == 0:
# stop np from optimising out empty slice reference
output = empty[offset : offset + 1][0:0].view(dtype)
else:
output = empty[offset : offset + n].view(dtype)
assert len(output) == size, len(output)
assert output.ctypes.data % align == 0, output.ctypes.data
return output
@PublicAPI
def concat_aligned(
items: List[np.ndarray], time_major: Optional[bool] = None
) -> np.ndarray:
"""Concatenate arrays, ensuring the output is 64-byte aligned.
We only align float arrays; other arrays are concatenated as normal.
This should be used instead of np.concatenate() to improve performance
when the output array is likely to be fed into TensorFlow.
Args:
items: The list of items to concatenate and align.
time_major: Whether the data in items is time-major, in which
case, we will concatenate along axis=1.
Returns:
The concat'd and aligned array.
"""
if len(items) == 0:
return []
elif len(items) == 1:
# we assume the input is aligned. In any case, it doesn't help
# performance to force align it since that incurs a needless copy.
return items[0]
elif isinstance(items[0], np.ndarray) and items[0].dtype in [
np.float32,
np.float64,
np.uint8,
]:
dtype = items[0].dtype
flat = aligned_array(sum(s.size for s in items), dtype)
if time_major is not None:
if time_major is True:
batch_dim = sum(s.shape[1] for s in items)
new_shape = (items[0].shape[0], batch_dim,) + items[
0
].shape[2:]
else:
batch_dim = sum(s.shape[0] for s in items)
new_shape = (batch_dim, items[0].shape[1],) + items[
0
].shape[2:]
else:
batch_dim = sum(s.shape[0] for s in items)
new_shape = (batch_dim,) + items[0].shape[1:]
output = flat.reshape(new_shape)
assert output.ctypes.data % 64 == 0, output.ctypes.data
np.concatenate(items, out=output, axis=1 if time_major else 0)
return output
else:
return np.concatenate(items, axis=1 if time_major else 0)
@PublicAPI
def convert_to_numpy(
x: TensorStructType, reduce_type: bool = True, reduce_floats=DEPRECATED_VALUE
):
"""Converts values in `stats` to non-Tensor numpy or python types.
Args:
x: Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all torch/tf tensors
being converted to numpy types.
reduce_type: Whether to automatically reduce all float64 and int64 data
into float32 and int32 data, respectively.
Returns:
A new struct with the same structure as `x`, but with all
values converted to numpy arrays (on CPU).
"""
if reduce_floats != DEPRECATED_VALUE:
deprecation_warning(old="reduce_floats", new="reduce_types", error=False)
reduce_type = reduce_floats
# The mapping function used to numpyize torch/tf Tensors (and move them
# to the CPU beforehand).
def mapping(item):
if torch and isinstance(item, torch.Tensor):
ret = (
item.cpu().item()
if len(item.size()) == 0
else item.detach().cpu().numpy()
)
elif (
tf and isinstance(item, (tf.Tensor, tf.Variable)) and hasattr(item, "numpy")
):
assert tf.executing_eagerly()
ret = item.numpy()
else:
ret = item
if reduce_type and isinstance(ret, np.ndarray):
if np.issubdtype(ret.dtype, np.floating):
ret = ret.astype(np.float32)
elif np.issubdtype(ret.dtype, int):
ret = ret.astype(np.int32)
return ret
return ret
return tree.map_structure(mapping, x)
@PublicAPI
def fc(
x: np.ndarray,
weights: np.ndarray,
biases: Optional[np.ndarray] = None,
framework: Optional[str] = None,
) -> np.ndarray:
"""Calculates FC (dense) layer outputs given weights/biases and input.
Args:
x: The input to the dense layer.
weights: The weights matrix.
biases: The biases vector. All 0s if None.
framework: An optional framework hint (to figure out,
e.g. whether to transpose torch weight matrices).
Returns:
The dense layer's output.
"""
def map_(data, transpose=False):
if torch:
if isinstance(data, torch.Tensor):
data = data.cpu().detach().numpy()
if tf and tf.executing_eagerly():
if isinstance(data, tf.Variable):
data = data.numpy()
if transpose:
data = np.transpose(data)
return data
x = map_(x)
# Torch stores matrices in transpose (faster for backprop).
transpose = framework == "torch" and (
x.shape[1] != weights.shape[0] and x.shape[1] == weights.shape[1]
)
weights = map_(weights, transpose=transpose)
biases = map_(biases)
return np.matmul(x, weights) + (0.0 if biases is None else biases)
@PublicAPI
def flatten_inputs_to_1d_tensor(
inputs: TensorStructType,
spaces_struct: Optional[SpaceStruct] = None,
time_axis: bool = False,
) -> TensorType:
"""Flattens arbitrary input structs according to the given spaces struct.
Returns a single 1D tensor resulting from the different input
components' values.
Thereby:
- Boxes (any shape) get flattened to (B, [T]?, -1). Note that image boxes
are not treated differently from other types of Boxes and get
flattened as well.
- Discrete (int) values are one-hot'd, e.g. a batch of [1, 0, 3] (B=3 with
Discrete(4) space) results in [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]].
- MultiDiscrete values are multi-one-hot'd, e.g. a batch of
[[0, 2], [1, 4]] (B=2 with MultiDiscrete([2, 5]) space) results in
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 1]].
Args:
inputs: The inputs to be flattened.
spaces_struct: The structure of the spaces that behind the input
time_axis: Whether all inputs have a time-axis (after the batch axis).
If True, will keep not only the batch axis (0th), but the time axis
(1st) as-is and flatten everything from the 2nd axis up.
Returns:
A single 1D tensor resulting from concatenating all
flattened/one-hot'd input components. Depending on the time_axis flag,
the shape is (B, n) or (B, T, n).
Examples:
>>> # B=2
>>> from ray.rllib.utils.tf_utils import flatten_inputs_to_1d_tensor
>>> from gym.spaces import Discrete, Box
>>> out = flatten_inputs_to_1d_tensor( # doctest: +SKIP
... {"a": [1, 0], "b": [[[0.0], [0.1]], [1.0], [1.1]]},
... spaces_struct=dict(a=Discrete(2), b=Box(shape=(2, 1)))
... ) # doctest: +SKIP
>>> print(out) # doctest: +SKIP
[[0.0, 1.0, 0.0, 0.1], [1.0, 0.0, 1.0, 1.1]] # B=2 n=4
>>> # B=2; T=2
>>> out = flatten_inputs_to_1d_tensor( # doctest: +SKIP
... ([[1, 0], [0, 1]],
... [[[0.0, 0.1], [1.0, 1.1]], [[2.0, 2.1], [3.0, 3.1]]]),
... spaces_struct=tuple([Discrete(2), Box(shape=(2, ))]),
... time_axis=True
... ) # doctest: +SKIP
>>> print(out) # doctest: +SKIP
[[[0.0, 1.0, 0.0, 0.1], [1.0, 0.0, 1.0, 1.1]],\
[[1.0, 0.0, 2.0, 2.1], [0.0, 1.0, 3.0, 3.1]]] # B=2 T=2 n=4
"""
flat_inputs = tree.flatten(inputs)
flat_spaces = (
tree.flatten(spaces_struct)
if spaces_struct is not None
else [None] * len(flat_inputs)
)
B = None
T = None
out = []
for input_, space in zip(flat_inputs, flat_spaces):
assert isinstance(input_, np.ndarray)
# Store batch and (if applicable) time dimension.
if B is None:
B = input_.shape[0]
if time_axis:
T = input_.shape[1]
# One-hot encoding.
if isinstance(space, Discrete):
if time_axis:
input_ = np.reshape(input_, [B * T])
out.append(one_hot(input_, depth=space.n).astype(np.float32))
# Multi one-hot encoding.
elif isinstance(space, MultiDiscrete):
if time_axis:
input_ = np.reshape(input_, [B * T, -1])
out.append(
np.concatenate(
[
one_hot(input_[:, i], depth=n).astype(np.float32)
for i, n in enumerate(space.nvec)
],
axis=-1,
)
)
# Box: Flatten.
else:
if time_axis:
input_ = np.reshape(input_, [B * T, -1])
else:
input_ = np.reshape(input_, [B, -1])
out.append(input_.astype(np.float32))
merged = np.concatenate(out, axis=-1)
# Restore the time-dimension, if applicable.
if time_axis:
merged = np.reshape(merged, [B, T, -1])
return merged
@PublicAPI
def make_action_immutable(obj):
"""Flags actions immutable to notify users when trying to change them.
Can also be used with any tree-like structure containing either
dictionaries, numpy arrays or already immutable objects per se.
Note, however that `tree.map_structure()` will in general not
include the shallow object containing all others and therefore
immutability will hold only for all objects contained in it.
Use `tree.traverse(fun, action, top_down=False)` to include
also the containing object.
Args:
obj: The object to be made immutable.
Returns:
The immutable object.
Examples:
>>> import tree
>>> import numpy as np
>>> from ray.rllib.utils.numpy import make_action_immutable
>>> arr = np.arange(1,10)
>>> d = dict(a = 1, b = (arr, arr))
>>> tree.traverse(make_action_immutable, d, top_down=False) # doctest: +SKIP
"""
if isinstance(obj, np.ndarray):
obj.setflags(write=False)
return obj
elif isinstance(obj, OrderedDict):
return MappingProxyType(dict(obj))
elif isinstance(obj, dict):
return MappingProxyType(obj)
else:
return obj
@PublicAPI
def huber_loss(x: np.ndarray, delta: float = 1.0) -> np.ndarray:
"""Reference: https://en.wikipedia.org/wiki/Huber_loss."""
return np.where(
np.abs(x) < delta, np.power(x, 2.0) * 0.5, delta * (np.abs(x) - 0.5 * delta)
)
@PublicAPI
def l2_loss(x: np.ndarray) -> np.ndarray:
"""Computes half the L2 norm of a tensor (w/o the sqrt): sum(x**2) / 2.
Args:
x: The input tensor.
Returns:
The l2-loss output according to the above formula given `x`.
"""
return np.sum(np.square(x)) / 2.0
@PublicAPI
def lstm(
x,
weights: np.ndarray,
biases: Optional[np.ndarray] = None,
initial_internal_states: Optional[np.ndarray] = None,
time_major: bool = False,
forget_bias: float = 1.0,
):
"""Calculates LSTM layer output given weights/biases, states, and input.
Args:
x: The inputs to the LSTM layer including time-rank
(0th if time-major, else 1st) and the batch-rank
(1st if time-major, else 0th).
weights: The weights matrix.
biases: The biases vector. All 0s if None.
initial_internal_states: The initial internal
states to pass into the layer. All 0s if None.
time_major: Whether to use time-major or not. Default: False.
forget_bias: Gets added to first sigmoid (forget gate) output.
Default: 1.0.
Returns:
Tuple consisting of 1) The LSTM layer's output and
2) Tuple: Last (c-state, h-state).
"""
sequence_length = x.shape[0 if time_major else 1]
batch_size = x.shape[1 if time_major else 0]
units = weights.shape[1] // 4 # 4 internal layers (3x sigmoid, 1x tanh)
if initial_internal_states is None:
c_states = np.zeros(shape=(batch_size, units))
h_states = np.zeros(shape=(batch_size, units))
else:
c_states = initial_internal_states[0]
h_states = initial_internal_states[1]
# Create a placeholder for all n-time step outputs.
if time_major:
unrolled_outputs = np.zeros(shape=(sequence_length, batch_size, units))
else:
unrolled_outputs = np.zeros(shape=(batch_size, sequence_length, units))
# Push the batch 4 times through the LSTM cell and capture the outputs plus
# the final h- and c-states.
for t in range(sequence_length):
input_matrix = x[t, :, :] if time_major else x[:, t, :]
input_matrix = np.concatenate((input_matrix, h_states), axis=1)
input_matmul_matrix = np.matmul(input_matrix, weights) + biases
# Forget gate (3rd slot in tf output matrix). Add static forget bias.
sigmoid_1 = sigmoid(input_matmul_matrix[:, units * 2 : units * 3] + forget_bias)
c_states = np.multiply(c_states, sigmoid_1)
# Add gate (1st and 2nd slots in tf output matrix).
sigmoid_2 = sigmoid(input_matmul_matrix[:, 0:units])
tanh_3 = np.tanh(input_matmul_matrix[:, units : units * 2])
c_states = np.add(c_states, np.multiply(sigmoid_2, tanh_3))
# Output gate (last slot in tf output matrix).
sigmoid_4 = sigmoid(input_matmul_matrix[:, units * 3 : units * 4])
h_states = np.multiply(sigmoid_4, np.tanh(c_states))
# Store this output time-slice.
if time_major:
unrolled_outputs[t, :, :] = h_states
else:
unrolled_outputs[:, t, :] = h_states
return unrolled_outputs, (c_states, h_states)
@PublicAPI
def one_hot(
x: Union[TensorType, int],
depth: int = 0,
on_value: float = 1.0,
off_value: float = 0.0,
) -> np.ndarray:
"""One-hot utility function for numpy.
Thanks to qianyizhang:
https://gist.github.com/qianyizhang/07ee1c15cad08afb03f5de69349efc30.
Args:
x: The input to be one-hot encoded.
depth: The max. number to be one-hot encoded (size of last rank).
on_value: The value to use for on. Default: 1.0.
off_value: The value to use for off. Default: 0.0.
Returns:
The one-hot encoded equivalent of the input array.
"""
# Handle simple ints properly.
if isinstance(x, int):
x = np.array(x, dtype=np.int32)
# Handle torch arrays properly.
elif torch and isinstance(x, torch.Tensor):
x = x.numpy()
# Handle bool arrays correctly.
if x.dtype == np.bool_:
x = x.astype(np.int)
depth = 2
# If depth is not given, try to infer it from the values in the array.
if depth == 0:
depth = np.max(x) + 1
assert (
np.max(x) < depth
), "ERROR: The max. index of `x` ({}) is larger than depth ({})!".format(
np.max(x), depth
)
shape = x.shape
# Python 2.7 compatibility, (*shape, depth) is not allowed.
shape_list = list(shape[:])
shape_list.append(depth)
out = np.ones(shape_list) * off_value
indices = []
for i in range(x.ndim):
tiles = [1] * x.ndim
s = [1] * x.ndim
s[i] = -1
r = np.arange(shape[i]).reshape(s)
if i > 0:
tiles[i - 1] = shape[i - 1]
r = np.tile(r, tiles)
indices.append(r)
indices.append(x)
out[tuple(indices)] = on_value
return out
@PublicAPI
def relu(x: np.ndarray, alpha: float = 0.0) -> np.ndarray:
"""Implementation of the leaky ReLU function.
y = x * alpha if x < 0 else x
Args:
x: The input values.
alpha: A scaling ("leak") factor to use for negative x.
Returns:
The leaky ReLU output for x.
"""
return np.maximum(x, x * alpha, x)
@PublicAPI
def sigmoid(x: np.ndarray, derivative: bool = False) -> np.ndarray:
"""
Returns the sigmoid function applied to x.
Alternatively, can return the derivative or the sigmoid function.
Args:
x: The input to the sigmoid function.
derivative: Whether to return the derivative or not.
Default: False.
Returns:
The sigmoid function (or its derivative) applied to x.
"""
if derivative:
return x * (1 - x)
else:
return 1 / (1 + np.exp(-x))
@PublicAPI
def softmax(
x: Union[np.ndarray, list], axis: int = -1, epsilon: Optional[float] = None
) -> np.ndarray:
"""Returns the softmax values for x.
The exact formula used is:
S(xi) = e^xi / SUMj(e^xj), where j goes over all elements in x.
Args:
x: The input to the softmax function.
axis: The axis along which to softmax.
epsilon: Optional epsilon as a minimum value. If None, use
`SMALL_NUMBER`.
Returns:
The softmax over x.
"""
epsilon = epsilon or SMALL_NUMBER
# x_exp = np.maximum(np.exp(x), SMALL_NUMBER)
x_exp = np.exp(x)
# return x_exp /
# np.maximum(np.sum(x_exp, axis, keepdims=True), SMALL_NUMBER)
return np.maximum(x_exp / np.sum(x_exp, axis, keepdims=True), epsilon)