ray/rllib/agents/pg/tests/test_pg.py

161 lines
6.3 KiB
Python

from gym.spaces import Box, Dict, Discrete, Tuple
import numpy as np
import unittest
import ray
import ray.rllib.agents.pg as pg
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.numpy import fc
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
check_train_results, framework_iterator
from ray import tune
class TestPG(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_pg_compilation(self):
"""Test whether a PGTrainer can be built with all frameworks."""
config = pg.DEFAULT_CONFIG.copy()
config["num_workers"] = 1
config["rollout_fragment_length"] = 500
# Test with filter to see whether they work w/o preprocessing.
config["observation_filter"] = "MeanStdFilter"
num_iterations = 1
image_space = Box(-1.0, 1.0, shape=(84, 84, 3))
simple_space = Box(-1.0, 1.0, shape=(3, ))
tune.register_env(
"random_dict_env", lambda _: RandomEnv({
"observation_space": Dict({
"a": simple_space,
"b": Discrete(2),
"c": image_space, }),
"action_space": Box(-1.0, 1.0, shape=(1, )), }))
tune.register_env(
"random_tuple_env", lambda _: RandomEnv({
"observation_space": Tuple([
simple_space, Discrete(2), image_space]),
"action_space": Box(-1.0, 1.0, shape=(1, )), }))
for _ in framework_iterator(config, with_eager_tracing=True):
# Test for different env types (discrete w/ and w/o image, + cont).
for env in [
"random_dict_env",
"random_tuple_env",
"MsPacmanNoFrameskip-v4",
"CartPole-v0",
"FrozenLake-v1",
]:
print(f"env={env}")
trainer = pg.PGTrainer(config=config, env=env)
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(
trainer, include_prev_action_reward=True)
def test_pg_loss_functions(self):
"""Tests the PG loss function math."""
config = pg.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["gamma"] = 0.99
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
# Fake CartPole episode of n time steps.
train_batch = SampleBatch({
SampleBatch.OBS: np.array([[0.1, 0.2, 0.3,
0.4], [0.5, 0.6, 0.7, 0.8],
[0.9, 1.0, 1.1, 1.2]]),
SampleBatch.ACTIONS: np.array([0, 1, 1]),
SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]),
SampleBatch.DONES: np.array([False, False, True]),
SampleBatch.EPS_ID: np.array([1234, 1234, 1234]),
SampleBatch.AGENT_INDEX: np.array([0, 0, 0]),
})
for fw, sess in framework_iterator(config, session=True):
dist_cls = (Categorical if fw != "torch" else TorchCategorical)
trainer = pg.PGTrainer(config=config, env="CartPole-v0")
policy = trainer.get_policy()
vars = policy.model.trainable_variables()
if sess:
vars = policy.get_session().run(vars)
# Post-process (calculate simple (non-GAE) advantages) and attach
# to train_batch dict.
# A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] =
# [2.9701, 1.99, 1.0]
train_batch_ = pg.post_process_advantages(policy,
train_batch.copy())
if fw == "torch":
train_batch_ = policy._lazy_tensor_dict(train_batch_)
# Check Advantage values.
check(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0])
# Actual loss results.
if sess:
results = policy.get_session().run(
policy._loss,
feed_dict=policy._get_loss_inputs_dict(
train_batch_, shuffle=False))
else:
results = (pg.pg_tf_loss
if fw in ["tf2", "tfe"] else pg.pg_torch_loss)(
policy,
policy.model,
dist_class=dist_cls,
train_batch=train_batch_)
# Calculate expected results.
if fw != "torch":
expected_logits = fc(
fc(train_batch_[SampleBatch.OBS],
vars[0],
vars[1],
framework=fw),
vars[2],
vars[3],
framework=fw)
else:
expected_logits = fc(
fc(train_batch_[SampleBatch.OBS],
vars[2],
vars[3],
framework=fw),
vars[0],
vars[1],
framework=fw)
expected_logp = dist_cls(expected_logits, policy.model).logp(
train_batch_[SampleBatch.ACTIONS])
adv = train_batch_[Postprocessing.ADVANTAGES]
if sess:
expected_logp = sess.run(expected_logp)
elif fw == "torch":
expected_logp = expected_logp.detach().cpu().numpy()
adv = adv.detach().cpu().numpy()
else:
expected_logp = expected_logp.numpy()
expected_loss = -np.mean(expected_logp * adv)
check(results, expected_loss, decimals=4)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))