mirror of
https://github.com/vale981/ray
synced 2025-03-07 02:51:39 -05:00
161 lines
6.3 KiB
Python
161 lines
6.3 KiB
Python
from gym.spaces import Box, Dict, Discrete, Tuple
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.pg as pg
|
|
from ray.rllib.evaluation.postprocessing import Postprocessing
|
|
from ray.rllib.examples.env.random_env import RandomEnv
|
|
from ray.rllib.models.tf.tf_action_dist import Categorical
|
|
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.numpy import fc
|
|
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
|
|
check_train_results, framework_iterator
|
|
from ray import tune
|
|
|
|
|
|
class TestPG(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_pg_compilation(self):
|
|
"""Test whether a PGTrainer can be built with all frameworks."""
|
|
config = pg.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 1
|
|
config["rollout_fragment_length"] = 500
|
|
# Test with filter to see whether they work w/o preprocessing.
|
|
config["observation_filter"] = "MeanStdFilter"
|
|
num_iterations = 1
|
|
|
|
image_space = Box(-1.0, 1.0, shape=(84, 84, 3))
|
|
simple_space = Box(-1.0, 1.0, shape=(3, ))
|
|
|
|
tune.register_env(
|
|
"random_dict_env", lambda _: RandomEnv({
|
|
"observation_space": Dict({
|
|
"a": simple_space,
|
|
"b": Discrete(2),
|
|
"c": image_space, }),
|
|
"action_space": Box(-1.0, 1.0, shape=(1, )), }))
|
|
tune.register_env(
|
|
"random_tuple_env", lambda _: RandomEnv({
|
|
"observation_space": Tuple([
|
|
simple_space, Discrete(2), image_space]),
|
|
"action_space": Box(-1.0, 1.0, shape=(1, )), }))
|
|
|
|
for _ in framework_iterator(config, with_eager_tracing=True):
|
|
# Test for different env types (discrete w/ and w/o image, + cont).
|
|
for env in [
|
|
"random_dict_env",
|
|
"random_tuple_env",
|
|
"MsPacmanNoFrameskip-v4",
|
|
"CartPole-v0",
|
|
"FrozenLake-v1",
|
|
]:
|
|
print(f"env={env}")
|
|
trainer = pg.PGTrainer(config=config, env=env)
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
check_compute_single_action(
|
|
trainer, include_prev_action_reward=True)
|
|
|
|
def test_pg_loss_functions(self):
|
|
"""Tests the PG loss function math."""
|
|
config = pg.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
config["gamma"] = 0.99
|
|
config["model"]["fcnet_hiddens"] = [10]
|
|
config["model"]["fcnet_activation"] = "linear"
|
|
|
|
# Fake CartPole episode of n time steps.
|
|
train_batch = SampleBatch({
|
|
SampleBatch.OBS: np.array([[0.1, 0.2, 0.3,
|
|
0.4], [0.5, 0.6, 0.7, 0.8],
|
|
[0.9, 1.0, 1.1, 1.2]]),
|
|
SampleBatch.ACTIONS: np.array([0, 1, 1]),
|
|
SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]),
|
|
SampleBatch.DONES: np.array([False, False, True]),
|
|
SampleBatch.EPS_ID: np.array([1234, 1234, 1234]),
|
|
SampleBatch.AGENT_INDEX: np.array([0, 0, 0]),
|
|
})
|
|
|
|
for fw, sess in framework_iterator(config, session=True):
|
|
dist_cls = (Categorical if fw != "torch" else TorchCategorical)
|
|
trainer = pg.PGTrainer(config=config, env="CartPole-v0")
|
|
policy = trainer.get_policy()
|
|
vars = policy.model.trainable_variables()
|
|
if sess:
|
|
vars = policy.get_session().run(vars)
|
|
|
|
# Post-process (calculate simple (non-GAE) advantages) and attach
|
|
# to train_batch dict.
|
|
# A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] =
|
|
# [2.9701, 1.99, 1.0]
|
|
train_batch_ = pg.post_process_advantages(policy,
|
|
train_batch.copy())
|
|
if fw == "torch":
|
|
train_batch_ = policy._lazy_tensor_dict(train_batch_)
|
|
|
|
# Check Advantage values.
|
|
check(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0])
|
|
|
|
# Actual loss results.
|
|
if sess:
|
|
results = policy.get_session().run(
|
|
policy._loss,
|
|
feed_dict=policy._get_loss_inputs_dict(
|
|
train_batch_, shuffle=False))
|
|
else:
|
|
results = (pg.pg_tf_loss
|
|
if fw in ["tf2", "tfe"] else pg.pg_torch_loss)(
|
|
policy,
|
|
policy.model,
|
|
dist_class=dist_cls,
|
|
train_batch=train_batch_)
|
|
|
|
# Calculate expected results.
|
|
if fw != "torch":
|
|
expected_logits = fc(
|
|
fc(train_batch_[SampleBatch.OBS],
|
|
vars[0],
|
|
vars[1],
|
|
framework=fw),
|
|
vars[2],
|
|
vars[3],
|
|
framework=fw)
|
|
else:
|
|
expected_logits = fc(
|
|
fc(train_batch_[SampleBatch.OBS],
|
|
vars[2],
|
|
vars[3],
|
|
framework=fw),
|
|
vars[0],
|
|
vars[1],
|
|
framework=fw)
|
|
expected_logp = dist_cls(expected_logits, policy.model).logp(
|
|
train_batch_[SampleBatch.ACTIONS])
|
|
adv = train_batch_[Postprocessing.ADVANTAGES]
|
|
if sess:
|
|
expected_logp = sess.run(expected_logp)
|
|
elif fw == "torch":
|
|
expected_logp = expected_logp.detach().cpu().numpy()
|
|
adv = adv.detach().cpu().numpy()
|
|
else:
|
|
expected_logp = expected_logp.numpy()
|
|
expected_loss = -np.mean(expected_logp * adv)
|
|
check(results, expected_loss, decimals=4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|