ray/rllib/env/wrappers/recsim_wrapper.py

117 lines
3.9 KiB
Python

"""Wrap Google's RecSim environment for RLlib
RecSim is a configurable recommender systems simulation platform.
Source: https://github.com/google-research/recsim
"""
from collections import OrderedDict
from typing import List
import gym
import numpy as np
from gym import spaces
from recsim.environments import interest_evolution
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.tune.registry import register_env
class RecSimObservationSpaceWrapper(gym.ObservationWrapper):
"""Fix RecSim environment's observation space
In RecSim's observation spaces, the "doc" field is a dictionary keyed by
document IDs. Those IDs are changing every step, thus generating a
different observation space in each time. This causes issues for RLlib
because it expects the observation space to remain the same across steps.
This environment wrapper fixes that by reindexing the documents by their
positions in the list.
"""
def __init__(self, env: gym.Env):
super().__init__(env)
obs_space = self.env.observation_space
doc_space = spaces.Dict(
OrderedDict(
[(str(k), doc)
for k, (_,
doc) in enumerate(obs_space["doc"].spaces.items())]))
self.observation_space = spaces.Dict(
OrderedDict([
("user", obs_space["user"]),
("doc", doc_space),
("response", obs_space["response"]),
]))
def observation(self, obs):
new_obs = OrderedDict()
new_obs["user"] = obs["user"]
new_obs["doc"] = {
str(k): v
for k, (_, v) in enumerate(obs["doc"].items())
}
new_obs["response"] = obs["response"]
return new_obs
class RecSimResetWrapper(gym.Wrapper):
"""Fix RecSim environment's reset() function
RecSim's reset() function returns an observation without the "response"
field, breaking RLlib's check. This wrapper fixes that by assigning a
random "response".
"""
def reset(self):
obs = super().reset()
obs["response"] = self.env.observation_space["response"].sample()
return obs
class MultiDiscreteToDiscreteActionWrapper(gym.ActionWrapper):
"""Convert the action space from MultiDiscrete to Discrete
At this moment, RLlib's DQN algorithms only work on Discrete action space.
This wrapper allows us to apply DQN algorithms to the RecSim environment.
"""
def __init__(self, env: gym.Env):
super().__init__(env)
if not isinstance(env.action_space, spaces.MultiDiscrete):
raise UnsupportedSpaceException(
f"Action space {env.action_space} "
f"is not supported by {self.__class__.__name__}")
self.action_space_dimensions = env.action_space.nvec
self.action_space = spaces.Discrete(
np.prod(self.action_space_dimensions))
def action(self, action: int) -> List[int]:
"""Convert a Discrete action to a MultiDiscrete action"""
multi_action = [None] * len(self.action_space_dimensions)
for idx, n in enumerate(self.action_space_dimensions):
action, dim_action = divmod(action, n)
multi_action[idx] = dim_action
return multi_action
def make_recsim_env(config):
DEFAULT_ENV_CONFIG = {
"num_candidates": 10,
"slate_size": 2,
"resample_documents": True,
"seed": 0,
"convert_to_discrete_action_space": False,
}
env_config = DEFAULT_ENV_CONFIG.copy()
env_config.update(config)
env = interest_evolution.create_environment(env_config)
env = RecSimResetWrapper(env)
env = RecSimObservationSpaceWrapper(env)
if config and config["convert_to_discrete_action_space"]:
env = MultiDiscreteToDiscreteActionWrapper(env)
return env
env_name = "RecSim-v1"
register_env(name=env_name, env_creator=make_recsim_env)