ray/python/ray/actor.py

1080 lines
43 KiB
Python

import inspect
import logging
import weakref
import _thread
import ray.ray_constants as ray_constants
import ray._raylet
import ray._private.signature as signature
import ray._private.runtime_env as runtime_support
import ray.worker
from ray.util.placement_group import (
PlacementGroup, check_placement_group_index, get_current_placement_group)
from ray import ActorClassID, Language
from ray._raylet import PythonFunctionDescriptor
from ray._private.client_mode_hook import client_mode_hook
from ray._private.client_mode_hook import client_mode_should_convert
from ray._private.client_mode_hook import client_mode_convert_actor
from ray import cross_language
from ray.util.inspect import (
is_function_or_method,
is_class_method,
is_static_method,
)
logger = logging.getLogger(__name__)
@client_mode_hook
def method(*args, **kwargs):
"""Annotate an actor method.
.. code-block:: python
@ray.remote
class Foo:
@ray.method(num_returns=2)
def bar(self):
return 1, 2
f = Foo.remote()
_, _ = f.bar.remote()
Args:
num_returns: The number of object refs that should be returned by
invocations of this actor method.
"""
assert len(args) == 0
assert len(kwargs) == 1
assert "num_returns" in kwargs
num_returns = kwargs["num_returns"]
def annotate_method(method):
method.__ray_num_returns__ = num_returns
return method
return annotate_method
# Create objects to wrap method invocations. This is done so that we can
# invoke methods with actor.method.remote() instead of actor.method().
class ActorMethod:
"""A class used to invoke an actor method.
Note: This class only keeps a weak ref to the actor, unless it has been
passed to a remote function. This avoids delays in GC of the actor.
Attributes:
_actor: A handle to the actor.
_method_name: The name of the actor method.
_num_returns: The default number of return values that the method
invocation should return.
_decorator: An optional decorator that should be applied to the actor
method invocation (as opposed to the actor method execution) before
invoking the method. The decorator must return a function that
takes in two arguments ("args" and "kwargs"). In most cases, it
should call the function that was passed into the decorator and
return the resulting ObjectRefs. For an example, see
"test_decorated_method" in "python/ray/tests/test_actor.py".
"""
def __init__(self,
actor,
method_name,
num_returns,
decorator=None,
hardref=False):
self._actor_ref = weakref.ref(actor)
self._method_name = method_name
self._num_returns = num_returns
# This is a decorator that is used to wrap the function invocation (as
# opposed to the function execution). The decorator must return a
# function that takes in two arguments ("args" and "kwargs"). In most
# cases, it should call the function that was passed into the decorator
# and return the resulting ObjectRefs.
self._decorator = decorator
# Acquire a hard ref to the actor, this is useful mainly when passing
# actor method handles to remote functions.
if hardref:
self._actor_hard_ref = actor
else:
self._actor_hard_ref = None
def __call__(self, *args, **kwargs):
raise TypeError("Actor methods cannot be called directly. Instead "
f"of running 'object.{self._method_name}()', try "
f"'object.{self._method_name}.remote()'.")
def remote(self, *args, **kwargs):
return self._remote(args, kwargs)
def options(self, **options):
"""Convenience method for executing an actor method call with options.
Same arguments as func._remote(), but returns a wrapped function
that a non-underscore .remote() can be called on.
Examples:
# The following two calls are equivalent.
>>> actor.my_method._remote(args=[x, y], name="foo", num_returns=2)
>>> actor.my_method.options(name="foo", num_returns=2).remote(x, y)
"""
func_cls = self
class FuncWrapper:
def remote(self, *args, **kwargs):
return func_cls._remote(args=args, kwargs=kwargs, **options)
return FuncWrapper()
def _remote(self, args=None, kwargs=None, name="", num_returns=None):
if num_returns is None:
num_returns = self._num_returns
def invocation(args, kwargs):
actor = self._actor_hard_ref or self._actor_ref()
if actor is None:
raise RuntimeError("Lost reference to actor")
return actor._actor_method_call(
self._method_name,
args=args,
kwargs=kwargs,
name=name,
num_returns=num_returns)
# Apply the decorator if there is one.
if self._decorator is not None:
invocation = self._decorator(invocation)
return invocation(args, kwargs)
def __getstate__(self):
return {
"actor": self._actor_ref(),
"method_name": self._method_name,
"num_returns": self._num_returns,
"decorator": self._decorator,
}
def __setstate__(self, state):
self.__init__(
state["actor"],
state["method_name"],
state["num_returns"],
state["decorator"],
hardref=True)
class ActorClassMethodMetadata(object):
"""Metadata for all methods in an actor class. This data can be cached.
Attributes:
methods: The actor methods.
decorators: Optional decorators that should be applied to the
method invocation function before invoking the actor methods. These
can be set by attaching the attribute
"__ray_invocation_decorator__" to the actor method.
signatures: The signatures of the methods.
num_returns: The default number of return values for
each actor method.
"""
_cache = {} # This cache will be cleared in ray.worker.disconnect()
def __init__(self):
class_name = type(self).__name__
raise TypeError(f"{class_name} can not be constructed directly, "
f"instead of running '{class_name}()', "
f"try '{class_name}.create()'")
@classmethod
def reset_cache(cls):
cls._cache.clear()
@classmethod
def create(cls, modified_class, actor_creation_function_descriptor):
# Try to create an instance from cache.
cached_meta = cls._cache.get(actor_creation_function_descriptor)
if cached_meta is not None:
return cached_meta
# Create an instance without __init__ called.
self = cls.__new__(cls)
actor_methods = inspect.getmembers(modified_class,
is_function_or_method)
self.methods = dict(actor_methods)
# Extract the signatures of each of the methods. This will be used
# to catch some errors if the methods are called with inappropriate
# arguments.
self.decorators = {}
self.signatures = {}
self.num_returns = {}
for method_name, method in actor_methods:
# Whether or not this method requires binding of its first
# argument. For class and static methods, we do not want to bind
# the first argument, but we do for instance methods
is_bound = (is_class_method(method)
or is_static_method(modified_class, method_name))
# Print a warning message if the method signature is not
# supported. We don't raise an exception because if the actor
# inherits from a class that has a method whose signature we
# don't support, there may not be much the user can do about it.
self.signatures[method_name] = signature.extract_signature(
method, ignore_first=not is_bound)
# Set the default number of return values for this method.
if hasattr(method, "__ray_num_returns__"):
self.num_returns[method_name] = (method.__ray_num_returns__)
else:
self.num_returns[method_name] = (
ray_constants.DEFAULT_ACTOR_METHOD_NUM_RETURN_VALS)
if hasattr(method, "__ray_invocation_decorator__"):
self.decorators[method_name] = (
method.__ray_invocation_decorator__)
# Update cache.
cls._cache[actor_creation_function_descriptor] = self
return self
class ActorClassMetadata:
"""Metadata for an actor class.
Attributes:
language: The actor language, e.g. Python, Java.
modified_class: The original class that was decorated (with some
additional methods added like __ray_terminate__).
actor_creation_function_descriptor: The function descriptor for
the actor creation task.
class_id: The ID of this actor class.
class_name: The name of this class.
num_cpus: The default number of CPUs required by the actor creation
task.
num_gpus: The default number of GPUs required by the actor creation
task.
memory: The heap memory quota for this actor.
object_store_memory: The object store memory quota for this actor.
resources: The default resources required by the actor creation task.
last_export_session_and_job: A pair of the last exported session
and job to help us to know whether this function was exported.
This is an imperfect mechanism used to determine if we need to
export the remote function again. It is imperfect in the sense that
the actor class definition could be exported multiple times by
different workers.
method_meta: The actor method metadata.
"""
def __init__(self, language, modified_class,
actor_creation_function_descriptor, class_id, max_restarts,
max_task_retries, num_cpus, num_gpus, memory,
object_store_memory, resources, accelerator_type):
self.language = language
self.modified_class = modified_class
self.actor_creation_function_descriptor = \
actor_creation_function_descriptor
self.class_name = actor_creation_function_descriptor.class_name
self.is_cross_language = language != Language.PYTHON
self.class_id = class_id
self.max_restarts = max_restarts
self.max_task_retries = max_task_retries
self.num_cpus = num_cpus
self.num_gpus = num_gpus
self.memory = memory
self.object_store_memory = object_store_memory
self.resources = resources
self.accelerator_type = accelerator_type
self.last_export_session_and_job = None
self.method_meta = ActorClassMethodMetadata.create(
modified_class, actor_creation_function_descriptor)
class ActorClass:
"""An actor class.
This is a decorated class. It can be used to create actors.
Attributes:
__ray_metadata__: Contains metadata for the actor.
"""
def __init__(cls, name, bases, attr):
"""Prevents users from directly inheriting from an ActorClass.
This will be called when a class is defined with an ActorClass object
as one of its base classes. To intentionally construct an ActorClass,
use the '_ray_from_modified_class' classmethod.
Raises:
TypeError: Always.
"""
for base in bases:
if isinstance(base, ActorClass):
raise TypeError(
f"Attempted to define subclass '{name}' of actor "
f"class '{base.__ray_metadata__.class_name}'. "
"Inheriting from actor classes is "
"not currently supported. You can instead "
"inherit from a non-actor base class and make "
"the derived class an actor class (with "
"@ray.remote).")
# This shouldn't be reached because one of the base classes must be
# an actor class if this was meant to be subclassed.
assert False, ("ActorClass.__init__ should not be called. Please use "
"the @ray.remote decorator instead.")
def __call__(self, *args, **kwargs):
"""Prevents users from directly instantiating an ActorClass.
This will be called instead of __init__ when 'ActorClass()' is executed
because an is an object rather than a metaobject. To properly
instantiated a remote actor, use 'ActorClass.remote()'.
Raises:
Exception: Always.
"""
raise TypeError("Actors cannot be instantiated directly. "
f"Instead of '{self.__ray_metadata__.class_name}()', "
f"use '{self.__ray_metadata__.class_name}.remote()'.")
@classmethod
def _ray_from_modified_class(cls, modified_class, class_id, max_restarts,
max_task_retries, num_cpus, num_gpus, memory,
object_store_memory, resources,
accelerator_type):
for attribute in [
"remote",
"_remote",
"_ray_from_modified_class",
"_ray_from_function_descriptor",
]:
if hasattr(modified_class, attribute):
logger.warning("Creating an actor from class "
f"{modified_class.__name__} overwrites "
f"attribute {attribute} of that class")
# Make sure the actor class we are constructing inherits from the
# original class so it retains all class properties.
class DerivedActorClass(cls, modified_class):
pass
name = f"ActorClass({modified_class.__name__})"
DerivedActorClass.__module__ = modified_class.__module__
DerivedActorClass.__name__ = name
DerivedActorClass.__qualname__ = name
# Construct the base object.
self = DerivedActorClass.__new__(DerivedActorClass)
# Actor creation function descriptor.
actor_creation_function_descriptor = \
PythonFunctionDescriptor.from_class(
modified_class.__ray_actor_class__)
self.__ray_metadata__ = ActorClassMetadata(
Language.PYTHON, modified_class,
actor_creation_function_descriptor, class_id, max_restarts,
max_task_retries, num_cpus, num_gpus, memory, object_store_memory,
resources, accelerator_type)
return self
@classmethod
def _ray_from_function_descriptor(
cls, language, actor_creation_function_descriptor, max_restarts,
max_task_retries, num_cpus, num_gpus, memory, object_store_memory,
resources, accelerator_type):
self = ActorClass.__new__(ActorClass)
self.__ray_metadata__ = ActorClassMetadata(
language, None, actor_creation_function_descriptor, None,
max_restarts, max_task_retries, num_cpus, num_gpus, memory,
object_store_memory, resources, accelerator_type)
return self
def remote(self, *args, **kwargs):
"""Create an actor.
Args:
args: These arguments are forwarded directly to the actor
constructor.
kwargs: These arguments are forwarded directly to the actor
constructor.
Returns:
A handle to the newly created actor.
"""
return self._remote(args=args, kwargs=kwargs)
def options(self,
args=None,
kwargs=None,
num_cpus=None,
num_gpus=None,
memory=None,
object_store_memory=None,
resources=None,
accelerator_type=None,
max_concurrency=None,
max_restarts=None,
max_task_retries=None,
name=None,
lifetime=None,
placement_group=None,
placement_group_bundle_index=-1,
placement_group_capture_child_tasks=None,
runtime_env=None,
override_environment_variables=None):
"""Configures and overrides the actor instantiation parameters.
The arguments are the same as those that can be passed
to :obj:`ray.remote`.
Examples:
.. code-block:: python
@ray.remote(num_cpus=2, resources={"CustomResource": 1})
class Foo:
def method(self):
return 1
# Class Foo will require 1 cpu instead of 2.
# It will also require no custom resources.
Bar = Foo.options(num_cpus=1, resources=None)
"""
actor_cls = self
class ActorOptionWrapper:
def remote(self, *args, **kwargs):
return actor_cls._remote(
args=args,
kwargs=kwargs,
num_cpus=num_cpus,
num_gpus=num_gpus,
memory=memory,
object_store_memory=object_store_memory,
resources=resources,
accelerator_type=accelerator_type,
max_concurrency=max_concurrency,
max_restarts=max_restarts,
max_task_retries=max_task_retries,
name=name,
lifetime=lifetime,
placement_group=placement_group,
placement_group_bundle_index=placement_group_bundle_index,
placement_group_capture_child_tasks=(
placement_group_capture_child_tasks),
runtime_env=runtime_env,
override_environment_variables=(
override_environment_variables))
return ActorOptionWrapper()
def _remote(self,
args=None,
kwargs=None,
num_cpus=None,
num_gpus=None,
memory=None,
object_store_memory=None,
resources=None,
accelerator_type=None,
max_concurrency=None,
max_restarts=None,
max_task_retries=None,
name=None,
lifetime=None,
placement_group=None,
placement_group_bundle_index=-1,
placement_group_capture_child_tasks=None,
runtime_env=None,
override_environment_variables=None):
"""Create an actor.
This method allows more flexibility than the remote method because
resource requirements can be specified and override the defaults in the
decorator.
Args:
args: The arguments to forward to the actor constructor.
kwargs: The keyword arguments to forward to the actor constructor.
num_cpus: The number of CPUs required by the actor creation task.
num_gpus: The number of GPUs required by the actor creation task.
memory: Restrict the heap memory usage of this actor.
object_store_memory: Restrict the object store memory used by
this actor when creating objects.
resources: The custom resources required by the actor creation
task.
max_concurrency: The max number of concurrent calls to allow for
this actor. This only works with direct actor calls. The max
concurrency defaults to 1 for threaded execution, and 1000 for
asyncio execution. Note that the execution order is not
guaranteed when max_concurrency > 1.
name: The globally unique name for the actor, which can be used
to retrieve the actor via ray.get_actor(name) as long as the
actor is still alive.
lifetime: Either `None`, which defaults to the actor will fate
share with its creator and will be deleted once its refcount
drops to zero, or "detached", which means the actor will live
as a global object independent of the creator.
placement_group: the placement group this actor belongs to,
or None if it doesn't belong to any group.
placement_group_bundle_index: the index of the bundle
if the actor belongs to a placement group, which may be -1 to
specify any available bundle.
placement_group_capture_child_tasks: Whether or not children tasks
of this actor should implicitly use the same placement group
as its parent. It is True by default.
runtime_env (Dict[str, Any]): Specifies the runtime environment for
this actor or task and its children (see ``runtime_env.py`` for
more details).
override_environment_variables: Environment variables to override
and/or introduce for this actor. This is a dictionary mapping
variable names to their values.
Returns:
A handle to the newly created actor.
"""
if args is None:
args = []
if kwargs is None:
kwargs = {}
meta = self.__ray_metadata__
actor_has_async_methods = len(
inspect.getmembers(
meta.modified_class,
predicate=inspect.iscoroutinefunction)) > 0
is_asyncio = actor_has_async_methods
if max_concurrency is None:
if is_asyncio:
max_concurrency = 1000
else:
max_concurrency = 1
if max_concurrency < 1:
raise ValueError("max_concurrency must be >= 1")
if client_mode_should_convert():
return client_mode_convert_actor(
self,
args,
kwargs,
num_cpus=num_cpus,
num_gpus=num_gpus,
memory=memory,
object_store_memory=object_store_memory,
resources=resources,
accelerator_type=accelerator_type,
max_concurrency=max_concurrency,
max_restarts=max_restarts,
max_task_retries=max_task_retries,
name=name,
lifetime=lifetime,
placement_group=placement_group,
placement_group_bundle_index=placement_group_bundle_index,
placement_group_capture_child_tasks=(
placement_group_capture_child_tasks),
runtime_env=runtime_env,
override_environment_variables=(
override_environment_variables))
worker = ray.worker.global_worker
worker.check_connected()
if name is not None:
if not isinstance(name, str):
raise TypeError(
f"name must be None or a string, got: '{type(name)}'.")
if name == "":
raise ValueError("Actor name cannot be an empty string.")
# Check whether the name is already taken.
# TODO(edoakes): this check has a race condition because two drivers
# could pass the check and then create the same named actor. We should
# instead check this when we create the actor, but that's currently an
# async call.
if name is not None:
try:
ray.get_actor(name)
except ValueError: # Name is not taken.
pass
else:
raise ValueError(
f"The name {name} is already taken. Please use "
"a different name or get the existing actor using "
f"ray.get_actor('{name}')")
if lifetime is None:
detached = False
elif lifetime == "detached":
detached = True
else:
raise ValueError(
"actor `lifetime` argument must be either `None` or 'detached'"
)
if placement_group_capture_child_tasks is None:
placement_group_capture_child_tasks = (
worker.should_capture_child_tasks_in_placement_group)
if placement_group is None:
if placement_group_capture_child_tasks:
placement_group = get_current_placement_group()
if not placement_group:
placement_group = PlacementGroup.empty()
check_placement_group_index(placement_group,
placement_group_bundle_index)
# Set the actor's default resources if not already set. First three
# conditions are to check that no resources were specified in the
# decorator. Last three conditions are to check that no resources were
# specified when _remote() was called.
if (meta.num_cpus is None and meta.num_gpus is None
and meta.resources is None and meta.accelerator_type is None
and num_cpus is None and num_gpus is None and resources is None
and accelerator_type is None):
# In the default case, actors acquire no resources for
# their lifetime, and actor methods will require 1 CPU.
cpus_to_use = ray_constants.DEFAULT_ACTOR_CREATION_CPU_SIMPLE
actor_method_cpu = ray_constants.DEFAULT_ACTOR_METHOD_CPU_SIMPLE
else:
# If any resources are specified (here or in decorator), then
# all resources are acquired for the actor's lifetime and no
# resources are associated with methods.
cpus_to_use = (ray_constants.DEFAULT_ACTOR_CREATION_CPU_SPECIFIED
if meta.num_cpus is None else meta.num_cpus)
actor_method_cpu = ray_constants.DEFAULT_ACTOR_METHOD_CPU_SPECIFIED
# LOCAL_MODE cannot handle cross_language
if worker.mode == ray.LOCAL_MODE:
assert not meta.is_cross_language, \
"Cross language ActorClass cannot be executed locally."
# Export the actor.
if not meta.is_cross_language and (meta.last_export_session_and_job !=
worker.current_session_and_job):
# If this actor class was not exported in this session and job,
# we need to export this function again, because current GCS
# doesn't have it.
meta.last_export_session_and_job = (worker.current_session_and_job)
# After serialize / deserialize modified class, the __module__
# of modified class will be ray.cloudpickle.cloudpickle.
# So, here pass actor_creation_function_descriptor to make
# sure export actor class correct.
worker.function_actor_manager.export_actor_class(
meta.modified_class, meta.actor_creation_function_descriptor,
meta.method_meta.methods.keys())
resources = ray._private.utils.resources_from_resource_arguments(
cpus_to_use, meta.num_gpus, meta.memory, meta.object_store_memory,
meta.resources, meta.accelerator_type, num_cpus, num_gpus, memory,
object_store_memory, resources, accelerator_type)
# If the actor methods require CPU resources, then set the required
# placement resources. If actor_placement_resources is empty, then
# the required placement resources will be the same as resources.
actor_placement_resources = {}
assert actor_method_cpu in [0, 1]
if actor_method_cpu == 1:
actor_placement_resources = resources.copy()
actor_placement_resources["CPU"] += 1
if meta.is_cross_language:
creation_args = cross_language.format_args(worker, args, kwargs)
else:
function_signature = meta.method_meta.signatures["__init__"]
creation_args = signature.flatten_args(function_signature, args,
kwargs)
if runtime_env:
parsed = runtime_support.RuntimeEnvDict(runtime_env)
override_environment_variables = parsed.to_worker_env_vars(
override_environment_variables)
actor_id = worker.core_worker.create_actor(
meta.language,
meta.actor_creation_function_descriptor,
creation_args,
max_restarts or meta.max_restarts,
max_task_retries or meta.max_task_retries,
resources,
actor_placement_resources,
max_concurrency,
detached,
name if name is not None else "",
is_asyncio,
placement_group.id,
placement_group_bundle_index,
placement_group_capture_child_tasks,
# Store actor_method_cpu in actor handle's extension data.
extension_data=str(actor_method_cpu),
override_environment_variables=override_environment_variables
or dict())
actor_handle = ActorHandle(
meta.language,
actor_id,
meta.method_meta.decorators,
meta.method_meta.signatures,
meta.method_meta.num_returns,
actor_method_cpu,
meta.actor_creation_function_descriptor,
worker.current_session_and_job,
original_handle=True)
return actor_handle
class ActorHandle:
"""A handle to an actor.
The fields in this class are prefixed with _ray_ to hide them from the user
and to avoid collision with actor method names.
An ActorHandle can be created in three ways. First, by calling .remote() on
an ActorClass. Second, by passing an actor handle into a task (forking the
ActorHandle). Third, by directly serializing the ActorHandle (e.g., with
cloudpickle).
Attributes:
_ray_actor_language: The actor language.
_ray_actor_id: Actor ID.
_ray_method_decorators: Optional decorators for the function
invocation. This can be used to change the behavior on the
invocation side, whereas a regular decorator can be used to change
the behavior on the execution side.
_ray_method_signatures: The signatures of the actor methods.
_ray_method_num_returns: The default number of return values for
each method.
_ray_actor_method_cpus: The number of CPUs required by actor methods.
_ray_original_handle: True if this is the original actor handle for a
given actor. If this is true, then the actor will be destroyed when
this handle goes out of scope.
_ray_is_cross_language: Whether this actor is cross language.
_ray_actor_creation_function_descriptor: The function descriptor
of the actor creation task.
"""
def __init__(self,
language,
actor_id,
method_decorators,
method_signatures,
method_num_returns,
actor_method_cpus,
actor_creation_function_descriptor,
session_and_job,
original_handle=False):
self._ray_actor_language = language
self._ray_actor_id = actor_id
self._ray_original_handle = original_handle
self._ray_method_decorators = method_decorators
self._ray_method_signatures = method_signatures
self._ray_method_num_returns = method_num_returns
self._ray_actor_method_cpus = actor_method_cpus
self._ray_session_and_job = session_and_job
self._ray_is_cross_language = language != Language.PYTHON
self._ray_actor_creation_function_descriptor = \
actor_creation_function_descriptor
self._ray_function_descriptor = {}
if not self._ray_is_cross_language:
assert isinstance(actor_creation_function_descriptor,
PythonFunctionDescriptor)
module_name = actor_creation_function_descriptor.module_name
class_name = actor_creation_function_descriptor.class_name
for method_name in self._ray_method_signatures.keys():
function_descriptor = PythonFunctionDescriptor(
module_name, method_name, class_name)
self._ray_function_descriptor[
method_name] = function_descriptor
method = ActorMethod(
self,
method_name,
self._ray_method_num_returns[method_name],
decorator=self._ray_method_decorators.get(method_name))
setattr(self, method_name, method)
def __del__(self):
# Mark that this actor handle has gone out of scope. Once all actor
# handles are out of scope, the actor will exit.
worker = ray.worker.global_worker
if worker.connected and hasattr(worker, "core_worker"):
worker.core_worker.remove_actor_handle_reference(
self._ray_actor_id)
def _actor_method_call(self,
method_name,
args=None,
kwargs=None,
name="",
num_returns=None):
"""Method execution stub for an actor handle.
This is the function that executes when
`actor.method_name.remote(*args, **kwargs)` is called. Instead of
executing locally, the method is packaged as a task and scheduled
to the remote actor instance.
Args:
method_name: The name of the actor method to execute.
args: A list of arguments for the actor method.
kwargs: A dictionary of keyword arguments for the actor method.
name (str): The name to give the actor method call task.
num_returns (int): The number of return values for the method.
Returns:
object_refs: A list of object refs returned by the remote actor
method.
"""
worker = ray.worker.global_worker
args = args or []
kwargs = kwargs or {}
if self._ray_is_cross_language:
list_args = cross_language.format_args(worker, args, kwargs)
function_descriptor = \
cross_language.get_function_descriptor_for_actor_method(
self._ray_actor_language,
self._ray_actor_creation_function_descriptor, method_name)
else:
function_signature = self._ray_method_signatures[method_name]
if not args and not kwargs and not function_signature:
list_args = []
else:
list_args = signature.flatten_args(function_signature, args,
kwargs)
function_descriptor = self._ray_function_descriptor[method_name]
if worker.mode == ray.LOCAL_MODE:
assert not self._ray_is_cross_language,\
"Cross language remote actor method " \
"cannot be executed locally."
object_refs = worker.core_worker.submit_actor_task(
self._ray_actor_language, self._ray_actor_id, function_descriptor,
list_args, name, num_returns, self._ray_actor_method_cpus)
if len(object_refs) == 1:
object_refs = object_refs[0]
elif len(object_refs) == 0:
object_refs = None
return object_refs
def __getattr__(self, item):
if not self._ray_is_cross_language:
raise AttributeError(f"'{type(self).__name__}' object has "
f"no attribute '{item}'")
if item in ["__ray_terminate__", "__ray_checkpoint__"]:
class FakeActorMethod(object):
def __call__(self, *args, **kwargs):
raise TypeError(
"Actor methods cannot be called directly. Instead "
"of running 'object.{}()', try 'object.{}.remote()'.".
format(item, item))
def remote(self, *args, **kwargs):
logger.warning(f"Actor method {item} is not "
"supported by cross language.")
return FakeActorMethod()
return ActorMethod(
self,
item,
ray_constants.
# Currently, we use default num returns
DEFAULT_ACTOR_METHOD_NUM_RETURN_VALS,
# Currently, cross-lang actor method not support decorator
decorator=None)
# Make tab completion work.
def __dir__(self):
return self._ray_method_signatures.keys()
def __repr__(self):
return (f"Actor("
f"{self._ray_actor_creation_function_descriptor.class_name},"
f"{self._actor_id.hex()})")
@property
def _actor_id(self):
return self._ray_actor_id
def _serialization_helper(self):
"""This is defined in order to make pickling work.
Returns:
A dictionary of the information needed to reconstruct the object.
"""
worker = ray.worker.global_worker
worker.check_connected()
if hasattr(worker, "core_worker"):
# Non-local mode
state = worker.core_worker.serialize_actor_handle(
self._ray_actor_id)
else:
# Local mode
state = ({
"actor_language": self._ray_actor_language,
"actor_id": self._ray_actor_id,
"method_decorators": self._ray_method_decorators,
"method_signatures": self._ray_method_signatures,
"method_num_returns": self._ray_method_num_returns,
"actor_method_cpus": self._ray_actor_method_cpus,
"actor_creation_function_descriptor": self.
_ray_actor_creation_function_descriptor,
}, None)
return state
@classmethod
def _deserialization_helper(cls, state, outer_object_ref=None):
"""This is defined in order to make pickling work.
Args:
state: The serialized state of the actor handle.
outer_object_ref: The ObjectRef that the serialized actor handle
was contained in, if any. This is used for counting references
to the actor handle.
"""
worker = ray.worker.global_worker
worker.check_connected()
if hasattr(worker, "core_worker"):
# Non-local mode
return worker.core_worker.deserialize_and_register_actor_handle(
state, outer_object_ref)
else:
# Local mode
return cls(
# TODO(swang): Accessing the worker's current task ID is not
# thread-safe.
state["actor_language"],
state["actor_id"],
state["method_decorators"],
state["method_signatures"],
state["method_num_returns"],
state["actor_method_cpus"],
state["actor_creation_function_descriptor"],
worker.current_session_and_job)
def __reduce__(self):
"""This code path is used by pickling but not by Ray forking."""
state = self._serialization_helper()
return ActorHandle._deserialization_helper, state
def modify_class(cls):
# cls has been modified.
if hasattr(cls, "__ray_actor_class__"):
return cls
# Give an error if cls is an old-style class.
if not issubclass(cls, object):
raise TypeError(
"The @ray.remote decorator cannot be applied to old-style "
"classes. In Python 2, you must declare the class with "
"'class ClassName(object):' instead of 'class ClassName:'.")
# Modify the class to have an additional method that will be used for
# terminating the worker.
class Class(cls):
__ray_actor_class__ = cls # The original actor class
def __ray_terminate__(self):
worker = ray.worker.global_worker
if worker.mode != ray.LOCAL_MODE:
ray.actor.exit_actor()
Class.__module__ = cls.__module__
Class.__name__ = cls.__name__
if not is_function_or_method(getattr(Class, "__init__", None)):
# Add __init__ if it does not exist.
# Actor creation will be executed with __init__ together.
# Assign an __init__ function will avoid many checks later on.
def __init__(self):
pass
Class.__init__ = __init__
return Class
def make_actor(cls, num_cpus, num_gpus, memory, object_store_memory, resources,
accelerator_type, max_restarts, max_task_retries):
Class = modify_class(cls)
if max_restarts is None:
max_restarts = 0
if max_task_retries is None:
max_task_retries = 0
infinite_restart = max_restarts == -1
if not infinite_restart:
if max_restarts < 0:
raise ValueError("max_restarts must be an integer >= -1 "
"-1 indicates infinite restarts")
else:
# Make sure we don't pass too big of an int to C++, causing
# an overflow.
max_restarts = min(max_restarts, ray_constants.MAX_INT64_VALUE)
if max_restarts == 0 and max_task_retries != 0:
raise ValueError(
"max_task_retries cannot be set if max_restarts is 0.")
return ActorClass._ray_from_modified_class(
Class, ActorClassID.from_random(), max_restarts, max_task_retries,
num_cpus, num_gpus, memory, object_store_memory, resources,
accelerator_type)
def exit_actor():
"""Intentionally exit the current actor.
This function is used to disconnect an actor and exit the worker.
Any ``atexit`` handlers installed in the actor will be run.
Raises:
Exception: An exception is raised if this is a driver or this
worker is not an actor.
"""
worker = ray.worker.global_worker
if worker.mode == ray.WORKER_MODE and not worker.actor_id.is_nil():
# Intentionally disconnect the core worker from the raylet so the
# raylet won't push an error message to the driver.
ray.worker.disconnect()
# Disconnect global state from GCS.
ray.state.state.disconnect()
# In asyncio actor mode, we can't raise SystemExit because it will just
# quit the asycnio event loop thread, not the main thread. Instead, we
# raise an interrupt signal to the main thread to tell it to exit.
if worker.core_worker.current_actor_is_asyncio():
_thread.interrupt_main()
return
# Set a flag to indicate this is an intentional actor exit. This
# reduces log verbosity.
exit = SystemExit(0)
exit.is_ray_terminate = True
raise exit
assert False, "This process should have terminated."
else:
raise TypeError("exit_actor called on a non-actor worker.")