mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
185 lines
5.9 KiB
Python
185 lines
5.9 KiB
Python
import numpy as np
|
|
import sys
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.a3c as a3c
|
|
import ray.rllib.agents.ddpg as ddpg
|
|
import ray.rllib.agents.ddpg.td3 as td3
|
|
import ray.rllib.agents.dqn as dqn
|
|
import ray.rllib.agents.impala as impala
|
|
import ray.rllib.agents.pg as pg
|
|
import ray.rllib.agents.ppo as ppo
|
|
import ray.rllib.agents.sac as sac
|
|
from ray.rllib.utils import check, framework_iterator
|
|
|
|
|
|
def do_test_explorations(run,
|
|
env,
|
|
config,
|
|
dummy_obs,
|
|
prev_a=None,
|
|
expected_mean_action=None):
|
|
"""Calls an Agent's `compute_actions` with different `explore` options."""
|
|
|
|
core_config = config.copy()
|
|
if run not in [a3c.A3CTrainer]:
|
|
core_config["num_workers"] = 0
|
|
|
|
# Test all frameworks.
|
|
for _ in framework_iterator(core_config):
|
|
print("Agent={}".format(run))
|
|
|
|
# Test for both the default Agent's exploration AND the `Random`
|
|
# exploration class.
|
|
for exploration in [None, "Random"]:
|
|
local_config = core_config.copy()
|
|
if exploration == "Random":
|
|
# TODO(sven): Random doesn't work for IMPALA yet.
|
|
if run is impala.ImpalaTrainer:
|
|
continue
|
|
local_config["exploration_config"] = {"type": "Random"}
|
|
print("exploration={}".format(exploration or "default"))
|
|
|
|
trainer = run(config=local_config, env=env)
|
|
|
|
# Make sure all actions drawn are the same, given same
|
|
# observations.
|
|
actions = []
|
|
for _ in range(25):
|
|
actions.append(
|
|
trainer.compute_single_action(
|
|
observation=dummy_obs,
|
|
explore=False,
|
|
prev_action=prev_a,
|
|
prev_reward=1.0 if prev_a is not None else None))
|
|
check(actions[-1], actions[0])
|
|
|
|
# Make sure actions drawn are different
|
|
# (around some mean value), given constant observations.
|
|
actions = []
|
|
for _ in range(500):
|
|
actions.append(
|
|
trainer.compute_single_action(
|
|
observation=dummy_obs,
|
|
explore=True,
|
|
prev_action=prev_a,
|
|
prev_reward=1.0 if prev_a is not None else None,
|
|
))
|
|
check(
|
|
np.mean(actions),
|
|
expected_mean_action
|
|
if expected_mean_action is not None else 0.5,
|
|
atol=0.4)
|
|
# Check that the stddev is not 0.0 (values differ).
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
|
|
class TestExplorations(unittest.TestCase):
|
|
"""
|
|
Tests all Exploration components and the deterministic flag for
|
|
compute_action calls.
|
|
"""
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init(num_cpus=4)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_a2c(self):
|
|
do_test_explorations(
|
|
a3c.A2CTrainer,
|
|
"CartPole-v0",
|
|
a3c.a2c.A2C_DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_a3c(self):
|
|
do_test_explorations(
|
|
a3c.A3CTrainer,
|
|
"CartPole-v0",
|
|
a3c.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_ddpg(self):
|
|
# Switch off random timesteps at beginning. We want to test actual
|
|
# GaussianNoise right away.
|
|
config = ddpg.DEFAULT_CONFIG.copy()
|
|
config["exploration_config"]["random_timesteps"] = 0
|
|
do_test_explorations(
|
|
ddpg.DDPGTrainer,
|
|
"Pendulum-v0",
|
|
config,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_simple_dqn(self):
|
|
do_test_explorations(dqn.SimpleQTrainer, "CartPole-v0",
|
|
dqn.SIMPLE_Q_DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]))
|
|
|
|
def test_dqn(self):
|
|
do_test_explorations(dqn.DQNTrainer, "CartPole-v0", dqn.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]))
|
|
|
|
def test_impala(self):
|
|
do_test_explorations(
|
|
impala.ImpalaTrainer,
|
|
"CartPole-v0",
|
|
dict(impala.DEFAULT_CONFIG.copy(), num_gpus=0),
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(0))
|
|
|
|
def test_pg(self):
|
|
do_test_explorations(
|
|
pg.PGTrainer,
|
|
"CartPole-v0",
|
|
pg.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_ppo_discr(self):
|
|
do_test_explorations(
|
|
ppo.PPOTrainer,
|
|
"CartPole-v0",
|
|
ppo.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(0))
|
|
|
|
def test_ppo_cont(self):
|
|
do_test_explorations(
|
|
ppo.PPOTrainer,
|
|
"Pendulum-v0",
|
|
ppo.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
prev_a=np.array([0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_sac(self):
|
|
do_test_explorations(
|
|
sac.SACTrainer,
|
|
"Pendulum-v0",
|
|
sac.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_td3(self):
|
|
config = td3.TD3_DEFAULT_CONFIG.copy()
|
|
# Switch off random timesteps at beginning. We want to test actual
|
|
# GaussianNoise right away.
|
|
config["exploration_config"]["random_timesteps"] = 0
|
|
do_test_explorations(
|
|
td3.TD3Trainer,
|
|
"Pendulum-v0",
|
|
config,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
sys.exit(pytest.main(["-v", __file__]))
|